
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

INVESTIGATION OF EFFECT OF
DIFFERENT RUN-TIME DISTRIBUTIONS

ON SMARTNET PERFORMANCE

by

Robert K. Armstrong, Jr.

September 1997

Thesis Advisor:
Second Reader:

Debra Hensgen
Tavlor Kidd

Approved for public release; distribution is unlimited.

19980223 129
[XJKO QUALITY INSPECTED &

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden,
to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204,
Arlington, Va 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

September, 1997

3. REPORT TYPE AND DATES COVERED

Master's Thesis

TITLE AND SUBTITLE INVESTIGATION OF EFFECT OF DIFFERENT
RUNTIME DISTRIBUTIONS ON SMARTNET PERFORMANCE

6. AUTHOR(S) Armstrong, Robert K., Jr.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey CA 93943-5000

8. PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT(maximum 200 words)

This thesis investigates, using in-line simulation, the effect of non-deterministic runtime distributions on the
performance of SmartNet's schedule execution using the Opportunistic Load Balancing (OLB) Algorithm, the
Limited Best Assignment (LBA) Algorithm, an 0(mn2) Greedy Algorithm, and an 0(mn) Greedy Algorithm.
SmartNet is a framework for scheduling jobs and machines in a heterogeneous computing environment. Its
major strength is its use of both current machine loads and predicted job/machine performance when generating
schedules. Schedules are built to meet various Quality of Service requirements using the above algorithms among
others. We enhanced SmartNet's simulator so that the runtime distributions could be used for experimentation.
The distributions were generated using derivations from our study on NAS Benchmarks. Experiments were run
for various categories of job/machine heterogeneity to compare the algorithms which account for both load and
expected performance (the Greedy algorithms) against OLB and LBA.
For all categories of heterogeneity, the greedy algorithms outperformed the other two algorithms for both trun-
cated Gaussian and exponential distributions. For these same distributions, the 0(mn) Greedy algorithm per-
formed as well as the Q(mn7) Greedy algorithm when the heterogeneity of jobs and machines was high.

14. SUBJECT TERMS
Hetogeneous systems, Runtime Distributions, SmartNet

15. NUMBER OF
PAGES 207

16. PRICE CODE

17. SECURITY CLASSIFI-
CATION OF REPORT

Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE

Unclassified

19. SECURITY CLASSIFI-
CATION OF ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std 239-18 298-102

DTIC QUALITY INSPECTED 3

Approved for public release; distribution is unlimited.

INVESTIGATION OF EFFECT OF DIFFERENT
RUN-TIME DISTRIBUTIONS ON SMARTNET

PERFORMANCE

Robert Kyle Armstrong, Jr.
Major, United States Marine Corps

B.S., United States Naval Academy, 1985

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1997

Author: -KA**^ fw<-4r^Uv^Uc»-'t \X

Robert Kyle Armstrong, Jr. CJ

Approved by: fj_4j^&)4^__^/

Debra Hensgen, Advisor

/ Taylor, Kidd, Second Reader

Ted Lewis, Chairman, Department of Computer Science

m

IV

ABSTRACT

This thesis investigates, using in-line simulation, the effect of non-deterministic

runtime distributions on the performance of SmartNet's schedule execution using the

Opportunistic Load Balancing (OLB) Algorithm, the Limited Best Assignment (LBA)

Algorithm, an 0(mn2) Greedy Algorithm, and an 0(mn) Greedy Algorithm. Smart-

Net is a framework for scheduling jobs and machines in a heterogeneous computing

environment. Its major strength is its use of both current machine loads and pre-

dicted job/machine performance when generating schedules. Schedules are built to

meet various Quality of Service requirements using the above algorithms among others.

We enhanced SmartNet's simulator so that the runtime distributions could be used for

experimentation. The distributions were generated using derivations from our study

on NAS Benchmarks. Experiments were run for various categories of job/machine

heterogeneity to compare the algorithms which account for both load and expected

performance (the Greedy algorithms) against OLB and LBA.

For all categories of heterogeneity, the greedy algorithms outperformed the

other two algorithms for both truncated Gaussian and exponential distributions. For

these same distributions, the 0(mn) Greedy algorithm performed as well as the

0(mn2) Greedy algorithm when the heterogeneity of jobs and machines was high.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND INFORMATION 4

B. STATEMENT OF PROBLEM 8

C. GOAL 8

D. THESIS ORGANIZATION 9

II. SMARTNET 11

A. INTRODUCTION 11

B. BACKGROUND INFORMATION 11

C. SMARTNET'S PURPOSE 13

1. Goal of SmartNet 13

2. Functionality 14

D. SMARTNET ARCHITECTURE 15

1. SmartNet Processes 15

2. SmartNet Algorithms 17

E. SMARTNET PERFORMANCE 20

F. EXAMPLES 22

1. Example 1: Opportunistic Load Balancing 22

2. Example 2: Limited Best Assignment 23

3. Example 3: Greedy Algorithm 24

III. DISCRETE EVENT SIMULATION 27

A. INTRODUCTION 27

B. BACKGROUND INFORMATION 27

C. DISCRETE EVENT SIMULATION 32

1. Overview 32

2. An Example of Discrete Event Simulation 34

D. RANDOM VARIATES 3S

vn

1. Random Versus Pseudo-random Numbers 39

2. Random Variates and Distribution Characteristics 40

3. Generating Random Variates 41

E. CONCLUDING REMARKS 46

IV. THE SMARTNET SIMULATOR 47

A. INTRODUCTION 47

B. BACKGROUND INFORMATION 47

C. DISCRETE EVENT SIMULATION AND THE SMARTNET

SIMULATOR 47

1. Advantages of the SmartNet Simulator 48

2. Limitation of the Original SmartNet Simulator 50

D. ALLEVIATING THE SMARTNET SIMULATOR LIMITATION 51

1. Enhancements Made to the SmartNet Simulator 51

E. CONCLUDING REMARKS 52

V. EXPERIMENTS 53

A. INTRODUCTION 53

B. PARAMETERS 55

1. Job Run-time Distributions 55

2. Categories of Heterogeneity 63

C. SIMULATION EXPERIMENTS 69

1. Baseline Experiments 72

2. Simulation Experiments where Jobs Ran for Times Dif-

ferent from the Predicted Run-times 77

D. DISCUSSION 82

1. Theoretical Limits 82

2. O(mn) Fast Greedy versus 0(mn2) Greedy 84

3. Grouped Submissions versus Uniformly Distributed, Se-

quential Submissions 87

vin

4. Mixed Heterogeneity Matrices 89

E. CONCLUSION 91

VI. SUMMARY AND FUTURE WORK 93

A. SUMMARY 93

B. FUTURE WORK 97

APPENDIX A. SMARTNET DATABASE FORMAT 99

APPENDIX B. ENHANCEMENTS MADE TO EXISTING SMART-

NET CODE 101

1. INTRODUCTION 101

2. SERVER/SIMULATOR/JOBSTARTEVENT.CC 101

3. SERVER/SN-LOG/SN-LOG.C 102

4. SN-SUBMIT/EXTERNAL.C 103

5. SN-SUBMIT/SUBMIT.C 104

6. SN-SUBMIT/README 105

7. SERVER/SRC/MODELMACHINE.H 106

8. SERVER/SRC/MODELMACHINE.CC 108

APPENDIX C. ADDITIONAL CODE FOR THE SMARTNET SIM-

ULATOR 109

1. INTRODUCTION 109

2. SERVER/ARMSTRONG/MAKEFILE 109

3. SERVER/ARMSTRONG/MYRAND.H k MYRAND.CC Ill

4. SERVER/ARMSTRONG/DISTRIBUTION.H & DISTRIBUTIONS 114

5. SERVER/ARMSTRONG/RANDOM.GENERATOR.H k RAN-

DOM.GENERATOR.CC 120

APPENDIX D. CODE FOR RUNTIME DISTRIBUTION TESTS . 125

1. CODE FOR COUNTING SORT 125

APPENDIX E. SIMULATION EXPERIMENTAL DATA 143

1. HETEROGENEITY QUADRANT DATA 143

IX

APPENDIX F. SIMULATION EXPERIMENT RESULTS 147

1. ZERO-VARIANCE SIMULATION EXPERIMENT RESULTS . 147

2. RESULTS OF SIMULATION EXPERIMENTS WHERE JOBS

RAN FOR TIMES DIFFERENT FROM PREDICTED TIMES. 148

a. Exponential Run-time Distribution Experiment Results . 148

b. Truncated Gaussian Run-time Distribution Experiment

Results 149

3. ADDITIONAL EXPERIMENTS 150

a. Comparison of Baseline Run-time and Theoretical Best

Case Run-time 150

b. Greedy versus Fast Greedy Performance 151

c. Grouped versus Sequential Job Request Methods 151

APPENDIX G. HOW TO RUN SMARTNET 153

1. GETTING STARTED 153

a. Unpacking the Code 153

b. Setting the Environment 153

c. Compiling SmartNet 153

2. USING THE SMARTNET SIMULATOR 155

a- Files 155

b. Commands 156

c. Scripts 157

3. RUNNING SMARTNET IN SIMULATION MODE 158

•1. EXAMPLE COMMAND FILES 159

a. Command File — The Random Method . . . 159

b. Command File — The Grouped Method 162

5. EXAMPLE DATABASE FILE 163

6. EXAMPLE SCRIPTS 171

a. Script for Starting and Running SmartNet: 125-1.sh ... 171

b. Script for Running Experiments: ttO.O.sh 173

7. EXAMPLE PARSE SCRIPTS 179

a. Parsing Run-Time Data From Log Files: parselog.pl ... 179

b. Collecting Run-Time Data 183

LIST OF REFERENCES 185

INITIAL DISTRIBUTION LIST 187

XI

XU

LIST OF FIGURES

1. The Random Nature of Artillery Fires 3

2. Single Instruction, Multiple Data (SIMD) Machine Architecture 10

3. The Metacomputer Concept. Many HPC sites are connected to

form a large, powerful, distributed virtual machine 12

4. SmartNet Architecture 15

5. Example 1: An OLB Schedule 23

6. Example 2: An LBA Schedule 24

7. Example 3: A SmartNet Schedule 25

8. Ways to study a system 28

9. Flow of control in Discrete Event Simulation 34

10. Logistic Example: Air Transport 35

11. An Example of a Gaussian Distribution ". . . 41

12. An Example of an Exponential Distribution 46

13. Real versus Simulated Time 49

14. Forked Counting Sort, caesar 59

15. Forked Counting Sort, elvis 60

16. Counting Sort, caesar, single processor 61

17. Counting Sort, elvis, single processor 62

18. epAl NAS Benchmark, Executable Residing on Local Disk. ... 63

19. cpAl NAS Benchmark, Files obtained over a lightly loaded network. 64

20. Heterogeneity and Consistency 65

21. Consistency between jobs and machines 68

22. Inconsistency between two jobs and four machines 69

23. Baseline Run-time Distribution Results, High-Job, High Ma-

chine Heterogeneity, 125-1 73

Xlll

24. Baseline Run-time Distribution Results, High-Job, Low-Machine

Heterogeneity, 125-1 74

25. Baseline Run-time Distribution Results, Low-Job, High-Machine

Heterogeneity, 125-1 74

26. Baseline Run-time Distribution Results, Low-Job, Low-Machine

Heterogeneity, 125-1 75

27. Baseline Run-time Distribution Results, High-Job, High-Machine,

Consistent Heterogeneity, 125-1 76

28. Baseline Run-time Distribution Results, Low-Job, High-Machine,

Consistent Heterogeneity, 125-1 77

29. Exponential Run-time Distribution Results, Low-Job, High-Machine

Heterogeneity, 500-4 78

30. Exponential Run-time Distribution Results, High-Job, High-Machine,

Consistent Heterogeneity, 500-4 78

31. Exponential Run-time Distribution Results, Low-Job, High-Machine,

Consistent Heterogeneity, 500-4 79

32. Truncated Gaussian Run-time Distribution Results, Low-Job,

High-Machine, Consistent Heterogeneity, 500-4 80

33. Truncated Gaussian Run-time Distribution Results, Low-Job,

High-Machine, Consistent Heterogeneity, 500-4 81

34. Truncated Gaussian Run-time Distribution Results, Low-Job,

High-Machine, Consistent Heterogeneity, 500-4 81

35. Theoretical Best versus Baseline Completion Time, High-Job,

Low-Machine Heterogeneity 83

36. Theoretical Best versus Baseline Completion Time, Low-Job,

Low-Machine Heterogeneity 84

37. Greedy versus Fast Greedy, Baseline Results 85

xiv

38. Greedy versus Fast Greedy, Exponential Run-time Variance Ex-

periments 85

39. Greedy versus Fast Greedy, Truncated Gaussian Run-time Vari-

ance Experiments 86

40. Grouped versus Sequential Job Requests 88

41. Greedy Performance; Grouped and Sequential Methods 89

42. Fast Greedy Performance, Grouped and Sequential Methods. . . 90

43. Directory Structure Used For Experiments 159

xv

XVI

LIST OF TABLES

I. SmartNet Performance: Average values of t 21

II. SmartNet Performance: Average values of t compared to the

lower bound 22

III. Job Run-times used in all examples 23

IV. Parameters of Various Distribution Functions 40

V. Configuration of SGI machines caesar and elvis 57

VI. High-Job, High-Machine Heterogeneity Matrix 66

VII. A Mixed Heterogeneity Matrix 91

VIII. Site Object Database Format 99

IX. Machine Object Database Format 99

X. Model Object Database Format 100

XL Model-Machine Object Database Format 100

XII. High-Job, High-Machine Heterogeneity 143

XIII. High-Job, Low-Machine Heterogeneity 144

XIV. Low-Job, High-Machine Heterogeneity 144

XV. Low-Job, Low-Machine Heterogeneity 145

XVI. High-Job, High-Machine, Consistent Heterogeneity 145

XVII. Low-Job, High-Machine, Consistent Heterogeneity. 146

XVIII. Baseline Simulation Experiment Results 147

XIX. Exponential Experiment Results 148

XX. Truncated Gaussian Experiment Results 149

XXI. Theoretical Best versus Baseline Completion Time 150

XXII. Greedy versus Fast Greedy, Sequential Method 151

XXIII. Greedy versus Fast Greedy, Grouped Method 151

xvn

XV111

I. INTRODUCTION

This thesis investigates the effect of non-deterministic run-times on the per-

formance of jobs scheduled by SmartNet [Ref. 1, 2, 3, 4] in a heterogeneous computing

environment. It has already been shown that if jobs are scheduled by SmartNet, and

they run for exactly the expected amount of time, that the overall performance of the

system is improved. SmartNet currently computes the expected run-time of a job by

averaging previous run-times which it stores in its database after a job terminates.

However, jobs rarely run for exactly this expected amount of time; even if a job is run

repeatedly with exactly the same parameters, on exactly the same machine, run-times

may differ due to memory stalls. Under less ideal conditions, when a job is using a

data file located on a remote file server, run-time variations become even more pro-

nounced. When the value of parameters are changed, the run-time can be drastically

different. SmartNet attempts to account for parameter value changes using a concept

called "compute characteristics" [Ref. 5], but it will often be the case that, at any

given time, at least one job will be running with some unidentified compute charac-

teristics. Therefore, this thesis seeks to identify the expected performance of jobs in

computing environments where there are changing or unknown compute characterist-

ics. In particular, it focuses on the time of completion of the last job. It compares

SmartNet performance under these conditions against performance without Smart-

Net. Specifically, it compares some of SmartNet's intelligent algorithms, which use

expected run-times, against another scheduling algorithm that does not use expected

run-times: Opportunistic Load Balancing (OLB). SmartNet's intelligent algorithms

have been shown to outperform this algorithm when jobs do run for exactly their ex-

pected run-times; this thesis will document the comparison of SmartNet against this

algorithm when the actual run-times of jobs are non-deterministic.

To relate the research in this thesis to other fields, we now present an example

that demonstrates how we can convert parameters that are typically random and un-

controllable into more predictable and expected factors. The idea is to be able to

exercise more control on the input to an algorithm that incorporates multiple para-

meters, many of which may be environmental factors, so that the unpredictable nature

of the algorithm's output is lessened. To some degree, an algorithm can then be made

more useful.

A real world example of this situation is that of providing indirect fire. Mortars

and artillery are indirect fire weapons. Indirect fire is the delivery of explosive ord-

nance along a parabolic or near-parabolic path from the weapon to the target. This is

different from the way rifles, pistols, and tanks deliver ordnance, which is along a line

of sight path from the weapon to the target. The parabolic path of artillery allows

ordnance to be delivered across great distances and over significant terrain such as

hills. A parabolic path, however, allows more factors, many of them uncertain, to

influence the outcome of an indirect round. It is the way that these uncertainties are

accounted for that is the crux of our example.

Figure 1 shows how indirect weapon fires might impact against a target. The

nature of indirect fire causes impacts near the target to disperse mostly along the

gun-target line but also somewhat left and right of that line. The resulting footprint

is basically an elliptical pattern with the majority of the impacts lying near the center

of the ellipse. This is because rounds fired indirectly are subject to the effects of wind,

temperature, and the rotation of the earth. Because velocities of rounds are slower, the

time of flight of a round is longer, and it is subject to effects not normally considered

by a line of sight weapon system. There are also factors particular to the weapon

system that can cause rounds to impact with limited precision, as shown in Figure 1.

The temperature of the gun tube, the temperature of the powder used to fire the round

from the tube, and the seat of the artillery round against the inside of the tube all

effect whether the round is fired optimally. If a round is fired optimally, we expect

that round to hit the target. If factors such as tube and powder temperature or the

effects of wind at higher elevations are not considered in the solution, we expect the

Path of Artillery Round

From Gun to Target

Dispersion of Artillery Rounds

Figure 1. The Random Nature of Artillery Fires.

round may miss.

The artillery community strives to reduce the number of unknown variables

present in indirect fire. There are parameters that are external to the artillery mech-

anism that are major influences upon the outcome. These influences can be measured

and their effect compensated for. The artillery community has taken a considerable

amount of time and effort to understand, develop tools for measuring, and compensate

for these influences. If consistent and timely measurements are made and applied to

the artillery solution, we can minimize the affects of outside influences and shoot "first

round, on target" with impunity.

It is the reduction of unknowns which is the eventual goal of this thesis. That

is. this research strives to understand the external influences upon SmartNet that

might keep it from performing optimally and to determine how best to compensate

for these influences. This thesis begins upon this problem by striving to understand

the impact of unknowns upon SmartNet's schedules.

A. BACKGROUND INFORMATION

Scheduling, in general, is a difficult problem [Ref. 6]. As an example, consider

the task of scheduling troop and equipment movement from the United States to the

east coast of Africa. We describe our example in terms of optimization theory. There

are many factors that need to be considered in order to create a schedule for troop

and equipment movement. One of the first and most obvious considerations is to

determine the maximum possible movement rate of troops and equipment into the

area. Only after this maximum movement rate is determined, can scheduling begin.

The following additional factors must then be considered:

• The mission commander will set priorities on units and equipment. He will
also specify times at which units and equipment must arrive in the theater.
The deadlines serve as scheduling constraints, whereas the priorities will be
incorporated into the optimization function.

• Certain pieces of equipment can only be transported by the largest aircraft or
by ship. These additional constraints often result in higher transport time.

• An additional example of constraints is the need for a Marine unit to arrive on
foreign soil within 72 hours of an identified crisis. The footprint of a forward
deployed unit will be small, and their sustainment capability limited to 30
days. Deployment of this unit into the area of operations needs to be planned
for; furthermore, the effect of placing a unit into the area of crisis on the will
of the foreign force to wage war must be incorporated into the optimization
criteria.

• Unfortunately individual threats cannot be considered as local optimization
problems. We have a large number of air transport assets that are committed
globally, which means that 100% of these assets can never be committed to a
single local contingency.

• Unfortunately, variables specific to location, such as airfield capacity, may need
to be separately modeled throughout the world. Although movement of troops

and equipment by air from the US is very flexible, the movement of troops and
equipment into a foreign port or airfield may not be.

• Time is another very important consideration. Time must be managed as
effectively and efficiently as possible, and if possible, used to advantage. It
takes time to match a contingency plan to the actual scenario, to start the
plan, to actually follow the plan, and to revise and correct the plan. The
amount of time a commander thinks he has to build up his forces will help him
set his priorities for the arrival of equipment and units in theater.

Unfortunately, a single schedule will not suffice. Many "what-if contingencies"

need to be calculated; situations can change quickly and schedules must change to

accommodate the dynamically changing environment. Being flexible and adaptable

are hallmarks of success in any military operation. Constant updates of the current

state of movement into the area are required to ensure that the schedule is still valid

and effective. Planes and ships and trucks break down, weather changes for the worse,

new regional contingencies pop up, and political pressures rise and fall. Schedules

must be recalculated to take into account both opportune advantages and unexpected

problems. It is the challenge of the scheduler to determine and properly analyze the

current state of deployments and movement, as well as the causes of any changes.

In summary, we cannot predict exactly how long any given transport operation will

require, but we can often match the transport operation mean time and variance to a

common probability distribution such as Gaussian or exponential.

The creation of a movement schedule in the above example will also be limited

by accurate state information. Acquiring total knowledge of an environment, and

a complete understanding the interoperability of the assets in that environment, is

a challenging problem. Scheduling decisions are, more often than not, made with

limited, and often only "best guess" information. This type of decision making will

only reach an optimal solution by accident; a scheduling tool that accounts for variance

in transport times would be very useful to commanders in charge of these operations.

This thesis will advance the state-of-the-art in heterogeneous schedulers that can, in

the future, not only be applicable to scheduling in computing environments, but also

to the problem of scheduling troop movement.

As we have hinted, our example above has direct correlation to a heterogeneous

computing environment. In a heterogeneous computing environment, machines of

different architectures are often linked together via a network. The machines may

be located in the same room or on different continents, or aboard sea-going vessels

or on satellites. The variety of architectures in the heterogeneous system provide

capabilities above and beyond what you would find in an environment consisting only

of machines with similar architecture. Below is an example that illustrates these

additional capabilities.

Consider the capabilities of the Single Instruction, Multiple Data (SIMD) ma-

chine.

SIMD machines (Single Instruction, Multiple Data) are an inexpensive
way to construct parallel computer systems. A typical SIMD architecture is
illustrated in Figure 2.

A single front end controls the entire system; the front end fetches and
decodes instructions. It includes (typically) a scalar processor core (usually a
RISC machine), plus additional instructions to control the parallel processor
ensemble. The front end usually has its own memory to hold the program and
scalar data.

The back end comprises many (up to thousands) processing elements
(PEs). Each can perform arithmetic operations, memory fetches, and can send
and receive messages. The systems essentially replicate the data path of a
processor in each PE, but the control part of the processor resides only in the
front end. This makes SIMD machines economical to design and build.

When the front end issues a parallel instruction, it broadcasts the in-
struction to all PEs, which all execute the instruction in parallel. Thus, a single
instruction is performed on all data simultaneously. [Ref. 7, pages 740—747]

The capability of a SIMD architecture is maximized, then, when used with

programs that require the same instruction or set of instructions be performed on

many different *pieces" of data. For example, SIMD machines manipulate matrices

better than single processor machines.

Another machine that might be found in a heterogeneous system is a vector pro-

cessing machine such as a CRAY. CRAY computers set the standard for high perform-

ance vector super-computing, and are still utilized worldwide1 when there is a need

for enormous computational capability. The Y-MP EL, a CRAY mini-supercomputer,

provides pipelining and segmentation, which are integral features of this architecture

that support parallel processing aboard a single chip. Vector processing is provided

to enable a programmer to sustain maximal I/O CPU throughput. Vector processing

increases computing speed because the execution of single instruction can allow an

operation to be performed sequentially on a set (or vector) of operands. [Ref. 8]

This type of architecture is suitable for analyzing vectorized data, such as weather or

satellite information.

In order to maximize the use of a heterogeneous computing environment con-

sisting of diverse architectures such as the CRAY and SIMD machines discussed above,

knowledge of both the machines in the environment and the programs to.be run on

each machine are required. It may be a waste of compute power to run a job on a

machine that is not best suited for the job. Such run-times could be large enough to

retard productivity and efficiency even on a lightly loaded system. The problem is

compounded on a heavily loaded system. Often, throughput maximization is a goal.

Throughput maximization in a heterogeneous environment might mean optimal use

of the resources, such that a minimal number of compute cycles are "wasted" doing

work better suited to the capabilities of other architectures or machines.

Smart Net is a scheduler that attempts to compute the best scheduling policy for

tasks in a shared, heterogeneous computing environment. Such a situation is analogous

to the previous troop and equipment movement example. The transport mechanisms

are comparable to various machines in a heterogeneous system. Jobs needing to be

run on a heterogeneous system are comparable to the units and equipment that need

to be moved. The commander needs as much information as possible in order to create

'CRAY IIIATIIIIH-M are now manufactured by Silicon Graphics, Incorporated.

a near-optimal schedule.

SmartNet is also analogous to the military logistical planner. SmartNet is dis-

cussed in detail in Chapter II of this thesis. SmartNet is a scheduling framework for

heterogeneous computing environments. It manages both jobs and machine resources

in that environment. SmartNet manages these assets by creating a near-optimal sched-

ule of jobs to be run on machines located on the network. SmartNet takes many factors

into account, including the performance of jobs on the various architectures, the com-

pute characteristics of a job, current machine loads, and the state of the heterogeneous

system. [Ref. 1]

B. STATEMENT OF PROBLEM

Prior to our research, SmartNet had a rudimentary simulation mode that al-

lowed its scheduling policies to be assessed without tying up the network and wasting

valuable compute cycles on machines that may or may not be "owned" by the testing

facility. The SmartNet simulator built a schedule from a set of requested jobs and

a database containing information about jobs, machines, and job-machine pairs. In

simulator mode, SmartNet then performed a discrete event simulation of the execution

of the schedule. This previous SmartNet simulator uses the expected time to compute

(ETC) value, which is the average run-time of the previous run-times of the job on

the same machine, as the simulated run-time. The problem with using ETC values

for run-times is that hardly, if ever, will a job execute for exactly the amount of time

expected. The use of the ETC value for simulated run-time duration means that the

SmartNet simulator does not produce realistic simulation results.

C. GOAL

The goal of this thesis is to investigate the effects that different run-time dis-

tributions have on the performance of SmartNet. We will enhance the SmartNet

simulator to provide, as the simulated run-time, a randomly generated run-time from

a reasonable run-time distribution for each job. This enhancement will enable us to in-

vestigate the efficiency of schedules resulting from the different scheduling algorithms

available in SmartNet under more realistic conditions. Simulations using our modi-

fied simulator will contribute to an understanding of the value of SmartNet in less

controlled environments, such as in the DOD's Joint Task Force Advanced Techno-

logy Demonstration (JTF-ATD) and Battlefield Awareness and Data Dissemination

(BADD) programs. Additionally, although not part of this thesis work, such sched-

ulers will likely become useful to commanders in the logistical scenario described in

our above example.

D. THESIS ORGANIZATION

This thesis is organized as follows. Chapter II provides a detailed look at

SmartNet. Chapter III is concerned with discrete event simulation as it pertains to

SmartNet simulation mode. Chapter IV deals with the enhancements that we made

to the SmartNet simulator. Chapter V details the experiments performed with the en-

hanced simulator, as well as the results obtained from these experiments. Chapter VI

summarizes the conclusions drawn from these experiments and discusses further re-

lated research opportunities.

FRONT END

BACK END

Figure 2. Single Instruction, Multiple Data (SIMD) Machine Architecture. The front
end is a KISC rhip with memory, used to control the back end. The back end is a
matrix arrangement of relatively cheap processors. Each processor performs the same
operation on different data, as directed by the front end. In this figure, only a small
portion of lit«- bark end is shown. Actual matrices of processors can be quite large,
up to 32. ol. 12> processors or more.

10

II. SMARTNET

A. INTRODUCTION

This chapter describes SmartNet in considerable detail. Section B provides

general information about SmartNet and why it was developed. Section C describes

how SmartNet operates. Section D contains information about the architecture of

SmartNet. Section E summarizes some previous results from the application of Smart-

Net to scheduling problems. Finally, Section F provides examples of the Opportunistic

Load Balancing, Limited Best Assignment, and other SmartNet scheduling algorithms.

B. BACKGROUND INFORMATION

SmartNet is a framework for scheduling resources in a heterogeneous comput-

ing environment [Ref. 1]. It has been in development for over 10 years at the Naval

Command, Control, and Ocean Surveillance Center (NCCOSC) Research, Develop-

ment, Test and Evaluation (RDTE) Division, San Diego, California. The principle

scientist is Richard Freund; however, the SmartNet Development Team consists of

government employees and contractors working in various locations across the United

States. The software currently contains over 100,000 lines of code, developed with 24

staff-years of effort.

The computing world is full of heterogeneous computing environments. They

exist wherever machines with distinctly different architectures are networked. The

machines may be connected for any number of reasons, but the environment that most

demands a product with SmartNet's capabilities is an environment used to perform

input-output intensive [Ref. 9] and/or compute intensive jobs [Ref. 1].

Current and future high performance computing (HPC) applications need in-

creasing amounts of computing power. Because of this, there is an increasing focus

on maximizing the productivity and efficiency of all available computing assets. In

most HPC centers, local and remotely available computers comprise a heterogeneous

11

network. By allowing all of these assets to be utilized by a maximum number of

applications, the connected assets in effect become a metacomputer. Figure 3 is a

pictorial description of this concept.

Figure 3. The Metacomputer Concept. Many HPC sites are connected to form a
large, powerful, distributed virtual machine.

Ongoing efforts within the research community include creating distributed

computing environments (DCEs) in order to further maximize the potential compute

power of these heterogeneous assets. Resource management systems (RMSs) have

been incorporated into existing computing environments with the goal of better man-

aging the set of resources. DCEs and RMSs have fostered improvements in HPC, but

still do not tackle the difficult problem of scheduling jobs and machines intelligently.

SmartNet is capable of supplementing the efforts of DCEs and RMSs to more

fully maximize the compute capability in a heterogeneous computing environment. Its

12

focus is on optimizing a set of tasks instead of each task singly. [Ref. 10]

While SmartNet is not the only advanced scheduling system under develop-

ment, it does have features that distinguish it from other packages. Most scheduling

efforts to date utilize Opportunistic Load Balancing (OLB) to develop scheduling solu-

tions. OLB is a method by which jobs are scheduled based upon the current loads on

the machines. If there is an open or unloaded machine, OLB schedules a job to run on

that machine. Put simply, it is a form of "queue management," whereby the queues are

evenly loaded with no attention being paid to jobs already enqueued or the expected

run-time of the same job on different machines (ETC). Another scheduling technique,

which uses the ETC concept that was pioneered by SmartNet, is Limited Best As-

signment (LB A). LB A considers one of the important parameters of scheduling, the

expected performance of each job on the various architectures in the heterogeneous

computing environment. LBA assigns each job to the machine upon which it is ex-

pected to execute the fastest [Ref. 1], assuming (unrealistically) that no other job is

using that machine. Both OLB and LBA consider only half of the information that is

required for the creation of a near-optimal schedule.

SmartNet considers both job performance and machine loads in its schedule

creation. Armed with these two parameters, it develops a better schedule. Section F

of this chapter provides examples of how a better schedule is generated using this

information.

C. SMARTNET'S PURPOSE
1. Goal of SmartNet

SmartNet is a scheduling framework for distributed, heterogeneous, high per-

formance computing (HPC,). In this role, SmartNet strives to:

• Maximize computing power,

• Increase the throughput of a set of jobs,

• Optimize cost-effectiveness,

13

• Leverage existing resources, and

• Ensure robust scheduling.

In this context, the term "framework" means that SmartNet provides a mech-

anism that can enhance the performance of existing systems, such as DCEs or RMSs.

As a framework, SmartNet was also designed so that it can easily accommodate new

scheduling criteria and heuristics. This makes SmartNet a viable tool for a majority

of HPC sites, regardless of the type of task and resource management that is currently

utilized at that site. SmartNet can be applied to nearly any environment where the

dynamics of the scheduling problem require a near optimal solution.

2. Functionality

SmartNet is designed to allow a single administrator to manage the entire sys-

tem. Users submit tasks to SmartNet. As tasks are received by the SmartNet server,

they are placed into a database, a schedule is created or updated, and the tasks are

run when the schedule indicates they should be. The database is a simple plain text

file with a particular (and strict) format that is cached in memory when SmartNet

is running. It is from this database that the server gets its job/machine estimated

run-time (ETC values) information and to which the server adds new experiential in-

formation. This database information is the source of information for the construction

of the schedule. Given the job/machine ETC values in the database, the scheduling

algorithms are applied to create a near-optimal schedule. The server initiates the

schedule and tracks the behavior of all jobs throughout the entire run-time process. If

a job runs longer than anticipated, it can be terminated or nagged. Such a "rogue job"

might cause an e-mail message to be generated from SmartNet to the original tasking

entity, letting that group or user know that something was wrong with their job. As

jobs complete, experiential data is collected and saved into a database. As experien-

tial data is gathered, "learning" occurs, and SmartNet changes compute characteristic

and expected time to complete (ETC) data in the database [Ref. 2].

14

D. SMARTNET ARCHITECTURE
1. SmartNet Processes

SmartNet is made up of several different processes, each with its own mission,

yet relying upon messages to pass data between its processes. These processes include

the Scheduler, the SmartNet Database, the Learning and Accounting Process, and the

Controller. Messages exchanged consist of Requests, Control Information, and Data.

Figure 4 depicts the relationships of these pieces.

Execution & rf-*

r-=>

Administration

Interface
<-i

1

Resources
1 \

\ 1

Scheduler <=—

1 \
A
\ 1 \

Clients Database Controller r* *~. -■-*

—=>

t 1 \

Learning &
Accounting *~.

RMSs
SmartNet

Figure 4. SmartNet Architecture, from [Ref. 2].

a. Interfaces

There are two user interfaces, one for the user who is submitting a job

to br run and one for the SmartNet system administrator who oversees the proper

operation of SmartNet. Graphical and command line versions exist for each. Users

15

can set priorities for their jobs, but the system administrator has ultimate control [Ref.

!]•
b. The Controller

The actual execution of jobs on resources may be controlled by any one

of several facilities, including Resource Management Systems (RMSs), other versions

of SmartNet, or Distributed Computing Environments (DCEs) [Ref. 2].

c. The Scheduler

The SmartNet Scheduler contains both optimization and scheduling al-

gorithms. There is a need for multiple algorithms because no polynomial algorithm

optimally schedules for all environments. New schedulers can be added by the Smart-

Net system administrator to take advantage of changing or unanticipated environ-

ments. Optimization is key to the performance of SmartNet. SmartNet can imple-

ment any number of optimization criteria, although only heuristics for maximizing the

throughput by minimizing the completion time of the last job that finishes are present.

Optimization criteria are what direct SmartNet to utilize specific search and schedul-

ing algorithms. The algorithms built into the SmartNet scheduler are discussed in

Section 2 [Ref. 2].

d. The Database

The SmartNet database is an ASCII text file containing information

about sites, groups, machines, models (jobs), and model-machine pairs. The database

can be built or edited by hand, but the SmartNet Editor is a good tool to use, as it

forces the administrator to input required data and writes the database in the proper

format. SmartNet is not forgiving of improper formatting. As the database is parsed,

data is evaluated and placed into objects commensurate with the order of data in

the file [Ref. 10]. Appendix A shows the fields of the database and the information

contained therein. Of particular importance is the expected time for completion (ETC)

field in the model-machine listings. This ETC data is what SmartNet uses to create

a schedule. The finish times of jobs must be either estimated by the programmer or

16

collected by SmartNet over the course of several runs in order for SmartNet to create

anything close to a near-optimal schedule. Chapter IV contains detailed information

about the changes that we made to this database, and to routines that read and write

to the database, in order to perform our experiments.

e. The Learning and Accounting Process

Presently, SmartNet's algorithms for learning and accounting are rudi-

mentary. The framework exists, though, to permit easy integration of additional

algorithms. As we mentioned in Section 2, rogue processes are tracked and reported.

The action taken upon discovering a rogue process is specified by the user or system

administrator at startup. Another form of learning and accounting that occurs is the

gathering of experiential data after job completion. SmartNet will collect run-time

statistics and write them out to the database file, making use of the information later

during the scheduling and execution of similar jobs. [Ref. 1]

/. The Controller

The Controller enters the picture when jobs terminate, jobs become

rogue processes, new job requests are input, and when machines or networks go down.

All of the above events may cause SmartNet to create a new schedule or re-start certain

uncompleted jobs. The controller is designed to allow SmartNet to:

• allow redundancy in critical environments,

• operate in environments where resource availability is not guaranteed,

• be integrated with an RMS and provide scheduling assistance to that RMS,
and

• coordinate the efforts of multiple RMSs [Ref. 1].

2. SmartNet Algorithms

SmartNet uses a number of algorithms to create a schedule. The general char-

acteristics of these algorithms are discussed below.

17

a. Exhaustive Algorithm

An Exhaustive Algorithm provides a "brute force" solution to the schedul-

ing problem. Every possible data combination is generated and compared. Because

this scheduling problem is NP-complete, this algorithm, that produces an optimal

result, can only be used with very small data sets [Ref. 6].

b. Greedy Algorithms

Greedy Algorithms make the best local choice available at a specific

point in the search tree [Ref. 6, pages 329-336]. For instance, if a Greedy algorithm

is to choose the cheapest candy, and is searching a row of candy including a 75 cent

Milky Way, a 55 cent Almond Joy, and a 35 cent package of Trident, it will choose

the Trident over the other two. This appears to be an optimal solution; however, it is

an optimal choice, based upon the candy considered at that point in the search tree.

It is a best local choice. If a twenty cent box of Tic-Tacs lies on another row, it is

the cheapest candy, and so the true optimal choice. Whether or not this decision aids

in the production of an optimal solution depends upon the parameters of the entire

problem. Since the Greedy Algorithms look for the best choice at some point in the

search tree, complete consideration of the effects of the choice upon the end result

are not made. Greedy algorithms are deterministic and produce only near-optimal

results. SmartNet uses both an 0(mn) algorithm, which we call Fast Greedy, and an

0(mn2) Greedy algorithm.

c. Evolutionary

Hartmut Pohlheim presents a fine explanation of evolutionary algorithms,

|K>rtions of which are included here.

Evolutionary algorithms are stochastic search methods that mimic the
metaphor of natural biological evolution. Evolutionary algorithms operate on a
population of potential solutions applying the principle of survival of the fittest
to produce better and better approximations to a solution. At each generation,
a new set of approximations is created by the process of selecting individuals
according to their level of fitness in the problem domain and breeding them
together using operators borrowed from natural genetics. This process leads

18

to the evolution of populations of individuals that are better suited to their
environment than the individuals that they were created from, just as in natural
adaptation.

[I]t can be seen that evolutionary algorithms differ substantially from
more traditional search and optimization methods. The most significant dif-
ferences are:

• Evolutionary algorithms search a population of points in parallel, not a
single point.

• Evolutionary algorithms do not require derivative information or other aux-
iliary knowledge; only the objective function and corresponding fitness
levels influence the directions of search.

• Evolutionary algorithms use probabilistic transition rules, not deterministic
ones.

• Evolutionary algorithms are generally more straightforward to apply.

• Evolutionary algorithms can provide a number of potential solutions to a
given problem. The final choice is left to the user. (Thus, in cases where
the particular problem does not have one individual solution, for example a
family of pareto-optimal solutions, as in the case of multi-objective optim-
ization and scheduling problems, then the evolutionary algorithm is poten-
tially useful for identifying these alternative solutions simultaneously.) [Ref.

11]

d. Simulated Annealing

Simulated annealing is a stochastic optimization method useful for find-

ing global minimum cost configurations of NP-complete combinatorial problems with

cost functions having many local minima [Ref. 12].

Simulated annealing builds on an analogy between the way metals con-

tract with decreasing temperature into a minimum energy crystalline structure and

the way searches for a minimum can be performed. After metal is heated and manip-

ulated, it must be cooled. The best way to cool metals is to do it slowly. This allows

the molecular makeup of the metal to slowly contract and "settle" upon itself which

reduces the probability of cracks, "bubbles", and otherwise weak bonds throughout

the entire mass of the metal structure. If metal is heated and then cooled very quickly,

the contraction of the molecular structure tends to settle into local minima rather than

to contract into a more stable, true minima. The metallurgic process of annealing then

19

compares to stochastic optimization methods like this: The heated metal is the ran-

dom state that needs to be reduced to some sort of minima. In Smart Net, this would

be the minimum time for completion of all jobs being scheduled. The temperature is

a parameter that governs the probability of increasing the cost function at any step in

the search for the global minima [Ref. 12].

The simulated annealing algorithm requires a valid solution space, a way

to randomly move about in the solution space, a method for evaluating cost functions,

and an annealing schedule. The annealing schedule includes the initial "temperature"

variant and rules for decreasing that temperature throughout the search process. [Ref.

12]

Simulated annealing has several advantages. Specifically, simulated an-

nealing:

• can deal with arbitrary systems and cost functions,

• statistically guarantees finding a near-optimal solution,

• is relatively easy to code, even for complex problems, and

• generally produces "good" solutions.

This makes simulated annealing an attractive, but computationally expensive, option

for optimization problems where heuristic (specialized or problem specific) methods

are not available. [Ref. 12]

e. Future Efforts

As SmartNet is still a work in progress, there are continual efforts to

develop better performing algorithms.

E. SMARTNET PERFORMANCE

Previous work with SmartNet, detailed in [Ref. 1], provides the following

information concerning schedules generated by SmartNet.

The performance data shown in Tables I and II was developed from several

scheduling problems run on SmartNet in simulation mode. The scheduling problems

20

varied in both the number of jobs being scheduled and the number of machines avail-

able, as well as the amount of heterogeneity. The number of jobs and machines varied

for each problem, but was always somewhere between two and 1000 jobs and two and

500 machines. The two modes of heterogeneity used were:

• Consistent Architectures. Given a set of machines, if one job runs faster on a
particular machine, then all jobs will run faster on that particular machine.

• Mixed Architectures. Given a set of machines, one job running faster on
a particular machine has no bearing on how other jobs might run on that
particular machine. No generalizations about the performance of all the jobs
on these machines can be deduced.

The algorithms were judged on how well they minimized the last job's completion

time. Knowing that finding an optimal schedule is an NP-complete problem [Ref. 1],

the baseline used for comparison was derived from a lower-bound algorithm. This

algorithm does not produce a valid schedule, but does obtain a time known to be less

than the time at which the last job will complete.

Table I provides average time of completion of the last job in a schedule for a

variety of architectures and algorithms. The numbers represent time, and show that

the schedule produced with a SmartNet Greedy algorithm (MinMin) is better than

either the OLB or LB A generated schedules.

SCALABLE ARCH. ARCH. MIX ARCH. MIX

JORS/MACHINES 500/100 500/100 1000/500

LBA 100 86.2 422.6
OLB 5.47 4.01 7.33

MI\MI\ (SMARTNET) 3.78 3.14 4.01

Table 1. Smart Not Performance: Average values for the time t at which the last job
in a schedule completes.

Table II shows OLB, LBA, and SmartNet's Greedy algorithms' performance

relative to a lower bound. After normalizing to the lower bound, the table shows

21

that given a 500/100 job/machine ratio on mixed architectures, the SmartNet Greedy

algorithms completes six percent slower than the best possible time. OLB completes

28% slower than this time. LBA, on the other hand, completes 2,650% slower than

this time.

SCALABLE ARCH. ARCH. MIX ARCH. MIX

JOBS/MACHINES 500/100 500/100 1000/500
LBA 26.5 27.5 105.5
OLB 1.45 1.28 1.83

MINMIN (SMARTNET) 1.13 1.06 1.29

Table II. SmartNet Performance: Average values of t compared to our lower bound.
t is the time at which the last job in a schedule completes. Our lower bound is
represented as 1.00. This table shows that when SmartNet schedules 500 jobs on 100
mixed-architecture machines, the schedule is completed in six percent more time than
our lower bound. From [Ref. 1].

F. EXAMPLES

These examples help explain both how SmartNet works and how a knowledge

of both machine load and anticipated job performance can create a better schedule.

We consider the following scenario: There are three machines, Machine-A,

Machine-B, and Machine-C. Each machine is of a different architectural design

(SIMD, MIMD, and Vector, respectively). There are four jobs, Jobl, Job2, Job3,

and Job4, each with different compute characteristics. Table III provides ETC values

for the job-machine pairs.

1. Example 1: Opportunistic Load Balancing

OLB is a method by which jobs are scheduled based upon the current loads on

the machines. Figure 5 shows one possibility of how an OLB scheduler might schedule

jobs to run on several machines. In this scenario, the OLB algorithm places the next

job in the queue of the next available machine. If the jobs are ordered in the queue

according to increasing job ID order, and if machines become available in the order

22

Machine-A

SIMD

Machine-B

MIMD

Machine-C

Vector

Jobl 33 5 22
Job2 2 49 56
Job3 13 12 17
Job4 15 3 9

Table III. Job Run-times used in all examples.

Machine-A, Machine-C, Machine-B, and Machine-B, the jobs will be scheduled as in

Figure 5. We note that the time of completion for all jobs is 56.

Machine A

Machine B

Machine C

Job 1 [33] 33

Job 3 [12] Job 4[3] 15

Job 2 [56] 56

Figure 5. Example 1: An OLB Schedule.

2. Example 2: Limited Best Assignment

LBA schedulers assign jobs to machines based upon the expected job's per-

formance on each of the machines. In other words, the jobs are assigned to the

machines upon which they should perform the best (i.e., have the shortest expected

run-time) [Ref. 1]. We note that this algorithm assumes that each job that it schedules

is the only job in the system. Again, Table III provides the expected run-time data

used in this example.

23

Machine A Job 2 [2]

Machine B Job 1 [5] Job 3 [12] Job 4[3] 20

Machine C

Figure 6. Example 2: An LBA Schedule.

Figure 6 shows how an LBA scheduler would schedule the four jobs on the

three machines. We note here that the expected time of completion for all jobs is 20.

3. Example 3: Greedy Algorithm

This example uses a Greedy Algorithm. This algorithm takes into account

both machine loads (like OLB) and run-time performance (like LBA) to produce a

near optimal schedule. Again, Table III provides the expected run-time data used in

this example.

Figure 7 provides a SmartNet schedule for the Table III data. Here, the earliest

expected run-time completion for all jobs is 15. This is significantly better than either

the OLB or LBA schedulers from Examples 1 and 2.

24

Machine A

Machine B

Machine C

Job 2[2] Job 3 [13] 15

Job 1 [5]

Job 4 [9]

Figure 7. Example 3: A SmartNet Schedule.

25

26

III. DISCRETE EVENT SIMULATION

A. INTRODUCTION

This chapter explains discrete event simulation. Section B provides background

information concerning simulation in general and explains why discrete event simula-

tion is a useful tool. Section C describes discrete event simulation in detail. Random

variates are explained in Section D. Section E presents concluding remarks.

B. BACKGROUND INFORMATION

The desire to predict the performance of a system has led to the need to study

both the system's performance and behavior. This desire is the driving force behind

much academic and industrial research. In this context, a system might be:

• an actual mechanical entity, such as an automobile or a building,

• some measurable non-mechanical entity, such as a hurricane or an ecosystem,
or

• a process or sequence of events involving both human and mechanical functions
similar to the logistic example posed in Chapter I.

One characteristic common to the types of systems listed above is that they

possess measurable parameters that influence their behaviors. For example, an auto-

mobile has the variable parameters velocity and acceleration, as well as the constant

parameters weight, mass, and coefficient of friction. Performance of an automobile

is affected by all of the above parameters. Parameters may be restricted to a des-

ignated range. A study of an automobile's performance would utilize these variable

and constant parameters, as well as any restrictions in effect, and provide perform-

ance predictions specific to the input parameters. Such a study would be helpful in

determining how an automobile might perform, given modifications to its weight or

coefficient of friction. There are several methods available to study this or any system.

While, in this case, the most obvious would be to study an actual automobile, there

27

are severe limitations to this method. It would be difficult, if not impossible, to make

adjustments to the coefficient of friction without altering the shape of the automobile.

Changing the shape of an automobile is difficult. The need to change the coefficient

of friction, for example, limits the utility of experimenting on the automobile itself.

In this case, and for many other types of systems, it is probably easier to construct a

model. Figure 8 shows the different ways systems can be studied.

Experiment
with the

actual system

Experiment
with a model
of the system

Physical
model

Mathematical
model

Analytical
solution

Simulation

Figure 8. Ways to study a system, from [Ref. 13, page 4].

A nuxlrl of a system can be constructed either mathematically or physically.

Deponditm upon tlic complexity of the system, both can be difficult. There are obvious

limitations and difficulties associated with constructing a physical model of a logistic

system used to move troops and equipment from the United States to a foreign area

28

of operations1. Physical modeling would involve scaling a global problem down to a

manageable size. In a high fidelity physical model, every physical feature of the logistic

operation might be physically rendered. Physical features requiring duplication in this

case would include the loading of ships and aircraft, troop movements, and airfield

operations. The difficulty in making such a model accurate is obvious. Physical

modeling to a reduced scale also introduces inaccuracy in many areas, not the least

of which is the non-linearity of design characteristics between full and reduced size

entities.

An alternate approach to physical modeling is mathematical modeling. Any

physical system can be reduced to a mathematical model that represents those aspects

of the system that the modeler desires to measure and control. In our logistic example,

the loading of aircraft can be mathematically modeled as taking a deterministic amount

of time dependent only on the type of cargo being loaded. Transit time can be modeled

also as a deterministic amount of time, perhaps by using the average of historical data.

Actual cargo can be modeled using its weight, mass, and measurement parameters and

considered a "puzzle piece" to be moved, shifted, and transported in accordance with

the priorities provided by the force commander. In general, a mathematical model

is an order of magnitude less expensive model to produce than the physical model.

Additionally, the designer can easily modify the fidelity of the various aspects of the

system that are deemed important.

There are two methods for studying mathematical models: analysis and simula-

tion. The analytical approach to studying a model requires the solution of mathemat-

ical equations. If the system being modeled is complex, though, it may be impossible

to develop mathematical equations that consider the combined effects of every in-

terrelated or critical piece of the model. Increasing the accuracy, or fidelity, of the

model may require very complex mathematical equations. As an example, we consider

modeling, in great detail, the logistic example from Chapter I.

'Sot- example provided in Chapter I.

29

To model a single fork lift, we would need to mathematically represent such

things as the mean time between failure of the engine, the fork lift mechanism, and

the tires. Also, rate of failure of the operator, driving speed, lifting speed, haul rates,

machine-to-task suitability, fuel consumption rate, and maintenance schedules would

need to be modeled. As we see, there are numerous details in modeling a single fork

lift, and the fork lift itself is only a single, small part, of the entire logistic system.

There may be four different types of fork lifts at a single airport, and a total of forty

fork lifts, altogether. The complexity of modeling forty fork lifts is greater than one

fork lift, but even if modeling them is easy, forty fork lifts as a whole are still a small

but vital piece of the logistic system. Further, more complex pieces of the logistic

system would need to be included in the model.

• Fuel. There are some finite number of refueling trucks, as well as a finite
amount of jet fuel. The delivery of fuel to the airfield, the process of refueling
aircraft, and the performance characteristics of the personnel and machines
involved in the entire refueling process would need to be modeled.

• Scheduling. Scheduling is an NP-complete problem. The airfield has a max-
imum physical capacity. The airfield also has a maximum workload under
which it can operate. Every asset at the airfield needs to be scheduled so that
the process of getting personnel and equipment onto aircraft and subsequently
overseas works in accordance with the intent of the commander. Introducing
scheduling into an analytical model may make it too complex to find a closed
form solution.

• The Human Factor. In every environment where people are working under
stressful conditions, accidents occur. When medium and large scale machinery
are present, severe accidents are possible. Accident and injury rates must
be modeled. Further, the consequences of these same accidents and injuries
must also be modeled. For example, we consider the effect that the following
scenario might have on the operation of an airfield: A Heavy fork lift operator
is loading an extremely large metal storage container on a C-5 cargo plane.
The C-5 is also being refueled. The fork lift operator has a heart attack and
loses control of the fork lift. The fork lift drives the storage container through
the side of the C-5, wrecking the jet's extensive hydraulic system. The refueler
operator, seeing the situation, performs an emergency disengage of the refueler
from the aircraft. His refueler dumps 500 pounds of highly flammable jet fuel
on the tarmac. We see that such scenarios, when modeled with great fidelity,

30

are mathematically very complex. The individual effects may be easy to model;
however, the comprehensive effect of the individual events may not be easy to
model.

If, when using the analytical approach, very realistic assumptions and high

fidelity are required, closed form solutions may be impossible, forcing the mathematical

modeler to make simplifying assumptions that can cause the results to be useless.

Suppose that the probability of a devastating accident involving a C-5 aircraft on an the

ground during refueling is 0.0001. Further, it is known that the probability distribution

is Gamma(0.0001, 15). If an accident of this type occurs, the airfields cycle rate of

aircraft is decreased by 10%. The Gamma distribution does not have a closed form

with these parameters. The mathematical modeler might choose to represent the

probability of this event occurring, then, with an exponential distribution, because it

has similar characteristics to the gamma distribution, and the exponential distribution

and its inverse are both closed form expressions. Because of the need to simplify the

mathematical model, the model no longer provides the desired accuracy, which may

result in incorrect performance estimates.

An important part of modeling is simplification. Simplification is a method of

reducing or removing specific complex factors which can be accounted for by other

means. Using the fork lift example above, if, in reality, the fork lift breaks once every

10,000 hours, the modeler may be able to assume that the fork lift will not break.

Ample consideration must be given to the possibility of skewing the results obtained

from the model because of poor simplifying assumptions. If the fork lift actually

breaks once every 10 hours, that factor would probably need to be included due to

the frequency of occurrence.

A simulation, executed on a computer, also uses a mathematical model. When

building simulations, it is easy to increase the fidelity of certain aspects of the system

while decreasing the fidelity of others. We again consider the fork lift discussed above.

A simulation model of a fork lift may not need to model fine details such as the mean

time between failures, fuel consumption, lifting speed, and maintenance schedules. It

31

may make sense to consider all of these factors as one and model the work performed

per hour. Such a simplification would reduce the complexity of the model, and might

make it easier to evaluate. Simulation models are evaluated via their state variables.

State variables are those parameters that are required to describe the model (and so,

the system) at a particular point in time.

Simulation models can be classified along three dimensions:

• Static versus Dynamic. A static model is a snapshot of a system at a particular
time, while a dynamic model is evolutionary.

• Deterministic versus Stochastic. A deterministic model has no random com-
ponents. Output is a deterministic function of input. A stochastic model is, in
contrast, non-deterministic.

• Continuous versus Discrete Time. A continuous time model is one in which the
state variables change continuously over time. A discrete time model is one for
which the state variables change instantaneously at separate (discrete) points
in time.

• Continuous versus Discrete States. A continuous state model is one in which
the values of the state variables can take on any of a defined range of values.
A discrete state model is one in which the values of the state variables are
restricted to a subset of acceptable values.

The type of simulation used to provide results in this thesis is static, stochastic,

and discrete in nature. This type of simulation is commonly called discrete event

simulation.

C. DISCRETE EVENT SIMULATION
1. Overview

Discrete event simulation models a system's activity as it progresses through

time. The operation of a system can be thought of as a collection of events that make

up the system's activity. An event is "any instantaneous occurrence that may change

the state of the system." [Ref. 13, page 7] Events occur at different times, and are

stamped with the time at which they occur. The state of the system is, informally,

32

its current condition. System state is defined by system specific state variables that

describe the system's condition [Ref. 13, page 81]. As events that are to occur in the

future are generated as a byproduct of simulating a current event, they are stored in

an event queue, where they stay until the simulation clock advances to the time of their

occurrence. Events in event queues are often ordered according to the simulation time

at which they are to occur. As the discrete event simulation progresses, individual

events are taken out of the event queue and processed. When an event is removed

from the event queue for processing, the simulation clock is advanced to the time

stamp on that event.

Discrete event simulation characteristically requires three sets of variables.

• Time variable t. t is used to track elapsed simulation time and is also called
the simulation clock.

• Counter variables. These are used to track repetitions of certain events and
the time that they occur.

• System state variables. These are model/system dependent; they describe the
state of the system at any given time [Ref. 14, page 81].

The advancement of time in discrete event simulation can be a difficult concept

to understand. The elapsed simulation time and the actual time required to run a

simulation are usually different. The time required to run a simulation may be greater

or less than the elapsed simulation time, and is dependent upon the particular model.

An example of a model where simulation time would probably be greater than real

time is in the simulation of subatomic particle movement. An example of a simulation

that would probably require less time than real time is simulation of continental drift.

Advancement of the simulation clock is usually done via one of two methods:

• Nrxt-Lvrut lime advance. Time is advanced whenever an event occurs.

• Fixrd Increment time advance. Time is advanced at fixed intervals.

Next-Kvent time advance is the most prevalent method [Ref. 13, pages 7—9].

Figure 9 depicts the flow of control for a next-time advance discrete model.

33

(Start J

Initialization Routine

1. Sim Clock = 0

2. Init System State

statistical counters

3. Init Event List

0. Invoke initialization routine

1. Invoke timing routine\
_ , > Repeatedly
2. Invoke event routine /

Event Routine i

Timing Routine

1. Determine the next

event type, say i

2. Advance the simulation

clock

1. Update system state

2. Update statistical counters

3. Generate future events, add to event list

Library Routines ^ I

Generate

Random Variates

Report Generator

1. Compute estimates of interest
2. Write report Stop

Figure 9. Flow of control in Discrete Event Simulation, from [Ref. 13, page 12].

2. An Example of Discrete Event Simulation

Discrete event simulation can be applied to the logistic system described in

Chapter I. The mission to be accomplished, using the logistic system, is the efficient

movement of troops and supplies from various locations throughout the United States

and other allied nations to some foreign area of operation. This system provides

numerous examples of the difficulties found when building a near optimal schedule

for the use of logistic assets. It is also a good system to demonstrate the utility and

suitability of discrete event simulation. Of particular note, however, is the difficulty

of modeling any system this complex and large. Akin to this difficulty is the need for

specific problem statements. In other words, we need to know what we are modeling

and why. It is often infeasible to model every aspect of such a system with great

34

fidelity, as the size of the system, including dependencies between subsystems, would

be too complex.

Eastern Africa Area of Operation

Air Transport Flow Into and Out Of
The Area of Operation

Figure 10. Logistic Example: Air transport assets into and out of Somalia.

An important factor in the success of a logistic system is the capability, per-

formance, and scheduling of air transport assets. Whenever U.S. forces deploy to

foreign soil for both peace keeping and combat missions, multiple plans for troop and

equipment build-up in that area are developed. The plans include rosters of units

(troops and equipment) that will be deployed and schedules designating when the

units are to arrive. The deployment of forces can take from several days to several

months in order to reach the force structure needed to fulfill the requirements of the

mission. The theater commander will be very concerned about reaching his desired

in-theater force structure, as it will drive his ability to begin, continue, and complete

35

the mission. The logisticians must plan the movement of assets into the area of opera-

tions as efficiently and effectively as possible to allow the theater commander to mass

his forces appropriately. Transportation of equipment and troops by air can help meet

initial force build-up requirements both efficiently and quickly.

The commander's desires specific to air transport scheduling and availability

can be simulated using discrete event simulation. Two important questions that the

simulation must answer for the commander are "How long will it take for my

forces and their equipment to be transported into the area of operations?"

and "Given the planned scenarios, which one most rapidly places the major-

ity of my fighting forces and their equipment on the ground?" One approach

to answering the commander's questions is to build a computer model and simulate

the movement of each force structure into the area of operation, and report the length

of time required. The goal is to use the simulation as one of the many tools available

to the commander.

Discrete event simulation has direct application to modeling the flow of aircraft

into an area of operations. We consider the following pseudo-algorithm:

• loop begins

1. Aircraft[aa]

2. Aircraft[aa]

3. Aircraft[aa]

4. Aircraft[aa]

5. Aircraft[aa]

6. Aircraft[aa]

7. Aircraft[aa]

8. Aircraft[aa]

9. Aircraft[aa]

10. Aircraft[aa]

• loop ends

arrives at f romU S Air fiel d[bb]

is ready to be unloaded

is ready to be loaded

is loaded

departs airfield[bb] for AREA.OF.OPERAT10NS

arrives at AREA.OF.OPERATIONS

is ready to be unloaded

is ready to be loaded

is loaded

departs AREAJOF.OPERATIONS for toVSAirfield[cc]

36

The above list enumerates several events that a discrete simulation of the sys-

tem might incorporate. The dynamics of this problem dictate that the above ten

events must occur at some point, and in the stated order, during every round trip

flight of an aircraft (Aircraft[aa\) from the United States (fromUSAirfield[bb})

to a foreign airfield (AREADFDPERATIONS) and back to the United States

(toUSAirfield[cc\).

The "discrete event" aspect of the simulation refers to the time interval between

specific events. The amount of time advanced is dependent upon what is going on in

between the two events. While a detailed discussion of a discrete event simulation for

the above example is beyond the intent of this section, an explanation of what occurs

between two of the events will suffice. We consider the events in lines 1 and 2 above:

1. Aircraft[aa] arrives at fromUSAirfield[bb]

2. Aircraft[aa] is ready to be unloaded

Event 1 is labeled with the time (SimulatedJimeA) that an aircraft arrives at a U.S.

airfield. Event 2 is labeled with the time (SimulatedJime.2) that the same aircraft

is ready to be unloaded. The duration between event 1 and event 2, in reality, is

determined by the amount of time the aircraft is idle on the ground, which is effected

by the number of other aircraft already on the ground as well as the rate at which

those aircraft can be unloaded. The duration between events 1 and 2 in the simulation

is either deterministic or stochastic. DeltaT represents the time required to unload

the aircraft. The advanced time function might proceed as follows.

1. SIMULATION CLOCK = Simulated dime A

2. SimulateddimeJl = SimulateddimeA + DeltaT

3. SIMULATION CLOCK = SimulatedJimeA

In our example, DeltaT is determined by a distribution that is based upon observed

data. If an aircraft must always wait the same amount of time before being unloaded

<

37

after it arrives at the airfield, a constant could be used for DeltaT. If the amount

of time that an aircraft must wait to be unloaded after it lands at the airfield is not

fixed, the probabilistic nature of that duration must be recreated for the simulation.

Recreation of this random process requires the following:

• The identification of the mathematical distribution that matches the distribu-
tion of times that the aircraft must wait to be unloaded.

• The generation of a random variate2, DeltaT, from the mathematical distribu-
tion previously identified.

The strength of discrete event simulation is evident when the simulation is

actually performed. Actually loading and unloading the aircraft may require several

days. However, because discrete event simulation instantaneously advances simulated

time to the time of the next event, the simulation may only require several seconds.

The SIMULATION CLOCK is advanced at each event by the appropriate real

world DeltaT, and the simulation terminates with realistic results in significantly less

time than the actual sequence of events.

D. RANDOM VARIATES

The very nature of discrete event simulation requires it to incorporate stochastic

processes to account for the inherent randomness in the system. We again consider the

logistic example used throughout this chapter. While the process of moving troops,

supplies, and equipment from the United States to a foreign shore is a highly sched-

uled, well planned operation, there is unavoidable randomness in the system. As an

example, we consider the effect of mechanical failure on air transport flow. Data, such

as the time between failures, can be gathered for the relevant aircraft. This data can

then be analyzed statistically to determine the mean and variance, and a distribution

fitted to the failure rates. Using this information, the failure can be simulated so

2Random variates are explained in Section D.

38

as to occur randomly according to a distribution that has been fit to the observed

data. The simulation, then, is capable of demonstrating the effect of a decrease in the

movement rate of aircraft into the area of operations. Further simulation work may

include modeling how the logistician or commander adapts to the lost air transport

movement capability and implements an updated flow plan.

1. Random Versus Pseudo-random Numbers

Knuth provides a good definition of the term random.

[The idea of randomness often invokes] philosophical discussions about what
the word "random" means. In a sense, there is no such thing as a random
number; for example, is 2 a random number? Rather, we speak of a sequence
of random numbers with a specified distribution, and this means loosely that
each number was obtained merely by chance, having nothing to do with other
numbers of the sequence, and that each number has a specified probability of
falling in any given range of numbers. [Ref. 15, page 2]

After computers were introduced, people began looking for efficient ways to

obtain random numbers using computer programs. Several methods were investigated,

but none proved efficient nor simple enough to gain acceptance. These problems led

to an interest in the production of random numbers using the arithmetic operations

of computers. John von Neumann suggested the "middle-square" method in 1946.

The idea is to take a number chosen at random, square that number, then extract the

middle digits to produce the next random number. The problem with this method is

that there really is not any randomness in the process. Each number is completely

determined by the one before it. However, the sequence of numbers appears to be

random. The generation of sequences of random numbers deterministically is usually

called pseudo-random number generation. Within most textbooks, as well as in this

thesis, sequences are termed random, with the understanding that sequences only

appear to be random. [Ref. 15, page 3]

If a random sequence of numbers is generated deterministically, that sequence

can then be reproduced. Is this ability to reproduce a sequence of numbers from

39

a random number generator really undesirable, though? In many cases, it is, in

fact, desirable. There are many occasions where the precise behavior of a simulated

stochastic process might need to be reproduced multiple times. The only way to do

this is to reproduce the sequence of random numbers used previously. This technique

is particularly useful during debugging, when the performance of the simulator may

need to be consistent in order to rule out anomalous factors. [Ref. 13, page 424]

2. Random Variates and Distribution Characteristics

A random variate is a random observation generated from a probability distri-

bution [Ref. 13, pages 11, 462]. A probability distribution has specific characteristics

that are referred to as the first, second, and third moment. Table IV shows the para-

meters that characterize several well known types of distributions.

DISTRIBUTION PARAMETER 1 PARAMETER 2 PARAMETER 3
GAUSSIAN MEAN VARIANCE -NA

EXPONENTIAL MEAN NA NA
UNIFORM SMALLEST LIMIT LARGEST LIMIT NA

WEIBULLGAMMA SHAPE PARAMETER SCALE PARAMETER NA
LOGNORMAL SCALE PARAMETER SHAPE PARAMETER

2 NA

Table IV. Parameters of Various Distribution Functions.

We will use the Gaussian (Normal) distribution as an example in this section.

Figure 11 shows a histogram of a Gaussian distribution of 100,000 random variates

distributed around a mean of 100 with standard deviation 15. Random variates can

be thought of as the x-axis values. The frequency of x-axis values is plotted along the

y-axis. The Gaussian curve shows us that there are more random variates near the

mean, and fewer as you move away from the mean. An explanation of how random

variates ran \H- generated from this information can be found in Section 3.

40

14000

12000

10000

Gaussian, mean 100, stnd dev 15

c w
3
CT
ID

8000

6000

4000

2000

i 1

"histo-normal"

Most randomf variates occur near the mean

20 40

Fewer random variates occur near upperand lower limits

80 100 120
Random Variates

160 180

Figure 11. An Example of a Gaussian Distribution, mean of 100, standard deviation
of \T).

3. Generating Random Variates

First, we present a short summary of what we have discussed thus far. A

stochastic process is a process that contains some probabilistic components. In order

to accurately simulate a stochastic process, those aspects of the process that occur

randomly must retain their random nature in the simulation. In order to simulate a

stochastic process, then, specific information about the nature of the random factors

must he known.

For example, we again consider the fork lift. We assume that the rate at which

th«- wrong cargo (in error) is loaded on an aircraft is a random parameter that must

!»<• considered in a simulation of the fork lift. Experimental data may show that the

mean time between a loading error per fork lift is 100 hours, where the data from

41

which this information was gathered behaves as a Gaussian (Normal) distribution

with mean 100 and standard deviation 15. This example was used to produce Figure

11. Given this information, the simulation of the fork lift can incorporate a random

error corresponding to this known behavior. Instead of a constant value of 100 hours

for the mean time between a loading error, a factor can be added to the simulation

that causes the fork lift to load the wrong cargo randomly, but at time differences

generated from a Gaussian distribution of mean 100 and standard deviation 15.

The mechanics of generating random variates are specific to the distribution in

question; however, every method relies upon a source of independent and identically

distributed (IID) random variates uniformly distributed on the interval (0,1) [Ref. 13,

pages 462-463]. These are commonly called IID U(0,1) random variates. The most

important aspect of generating random variates, then, is a valid source of IID U(0,1)

random variates. While there are numerous random number generators available for

particular languages and operating systems, the user must ensure that the random

number generator they choose to use is in fact IID U(0,1).

There are several general classes of approaches for generating random variates

from an IID [7(0,1) generator.

• Inverse Transform. This method is best .used for generating random variates
with a distribution function F that is continuous and increasing when 0 <
F(x) < 1. The technique is to generate U ~ f/(0,1) and return random
variate X = F-1 (£/"). [Ref. 13, pages 465-474]

• Composition. This technique applies when the distribution function can be
best expressed as a combination of other distribution functions. When the dis-
tribution function F can be expressed as a convex combination of distribution
functions Fx, F2,..., Fn, it may be easier to gather sample random variates
from the F[s than from the original F. [Ref. 13, pages 474-475]

• Convolution. The term convolution "comes from the terminology in stochastic
processes where the distribution of X is called the m-fold convolution of the
distribution of >}." [Ref. 13, page 477] This technique is best suited for distri-
butions for which the generation of random variable X is more easily expressed
as a sum of several IID random variables. The implementation of this technique
involves the generation of Yx, Y2,..., Yk, IID, each with distribution function

42

F, and the subsequent return of random variate X — Y\ + Yi + ... + Yk- [Ref.
13, page 477-478]

• Acceptance-Rejection. This is a less direct approach than the aforemen-
tioned techniques, yet is still useful, particularly when a more direct method
is too difficult or costly. This method requires the specification of a function
t that majorizes3 the density function /. This technique involves generating a
Y that has density r, and generating a U ~ {7(0,1), that is independent of Y.
If U < Uy\, this method must return the random variate X = Y, otherwise, it
generates a new value and similarly tests it. [Ref. 13, page 478]

The method used to generate a random variate should be chosen based upon

the particular distribution the random variate is to be drawn from, and the ease and

reliability with which random variates can be generated for that distribution. The

generation of random variates is considered reliable if the occurrence of individual

random variates is statistically equivalent to the distribution from which they are

derived.[Ref. 13, page 463]

If the distribution is of a known type, implementations are readily available that

require little work and promise the accurate generation of random variates. Otherwise,

the easiest method to implement is most likely Inverse Transform. Inverse Transform

can be an easy method because random variates are generated from the inverse of

the distribution function F; inverting the distribution function may be a simple task.

However, for some distributions, the inverse may be undefined. For example, the

Gaussian distribution function cannot be inverted because it does hot have a closed

form expression [Ref. 13, pages 465—466]. While there are numerical methods to

evaluate F-1 when there is no closed form, such an Inverse Transform may not be

the most computationally efficient method to use. If the distribution in question is

multi-modal, or a combination of two or more difFerent distributions, random variate

generation becomes more difficult, and Composition or Convolution should be used.

'Majorizes: t(x) > f(x).

43

a. Generating Gaussian Random Variates

The Gaussian distribution is characterized by the first moment (mean)

and second moment (variance). A random variate X ~ iV(0,1) can be used to obtain

some X' ~ iV(/i, a2) by setting X' = \i + aX. The ability to generate this data from

the first and second moments is helpful, because it allows us to focus on obtaining

standard Gaussian random variates (iV(0,1)). Random variates particular to any

Gaussian distribution can be obtained using the above computation.[Ref. 13, pages

490-491]

There are two commonly used methods for obtaining standard iV(0,1)

random variates. The first is the Box and Müller method, which is effective but has

a limitation when used with linear congruential random number generators(LCGs).

(LCGs are explained below.) We now explain the Box and Müller method, and then

explain this limitation. The Box and Müller method begins by generating two random

variates, U\ and U2, from an IID C/(0,1) generator. The variables Xi and X2 are

generated using the following formulae.

Xi = V-21nt/iCos 2nU2

X2 = V-21n[/1sin27rC/2

X\ and X2 are then IID N(0,1) random variates. The limitation alluded to above

can be easily seen when U\ and U2 are not true IID [7(0,1) random variables, but are

dependent, which might can occur if Ui and U2 are generated using the same seed.

Linear congruential generators rely on recursion to generate numbers. The recursive

formula for a linear congruential generator is as follows.

Zi = (aZi-i -f c)(mod m)

In this formula, m is the modulus, a is the multiplier, c is the increment, and Z0

the starting value or seed[Ref. 13, page 425]. The problem occurs because U2 is a

function of U\ as shown in the recursive relation above. This dependency can cause

A'i and X2 to fall on a spiral in (Xi,X2) space, because they are not independent,

44

identically distributed, random variates. Because of the possibility of this kind of

restrictive dependency, the Box and Müller method should not be used when only a

single stream of a linear congruential generator is available, but can be used if two

£/(0,1) random variables from separate seeds are available.[Ref. 13, page 425, 491]

A second method for obtaining standard A(0,1) random variates is

known as the polar method. This method is suitable for use with a single linear

congruential generator seed. N(Q,1) random variates are generated using the following

algorithm [Ref. 13, pages 491-492].

1. Generate U\ and [/2
as HD £/(0,1) variables.

2. Let Vi = 2Ui-l for i = 1,2.

3. Let W = V? + V2
2.

4. If W > 1, go back to step 1.

5. UW< 1,
let Y = y^F
let X! = ViY
let A2 = V2Y.

6. X\ and X2 are IID iV(0,1) random variates.

b. Generating Exponential Random Variates

The other distribution needed for our SmartNet simulator was the expo-

nential distribution. The exponential distribution is characterized by the first moment,

sometimes called the mean or simply ß. While the polar method is best suited for

generating Gaussian random variates, the inverse-transform method proves to be the

simplest and most accurate method for generating exponential variates. It is suitable

because both the exponential distribution function and its inverse can be expressed

using closed form equations. An exponential random variate A' can be generated using

the following simple algorithm [Ref. 13, page 486].

1. Generate U as an IID t/(0,1) variable.

2. Let A = -ßlnU.

45

3. Return X.

>. o
c
CD
3
CT
CD

Figure 12 shows an exponential distribution with mean 100.

Exponential Distribution, mean = 100

300 400 500
Random Variates

600 700 800 900

Figure 12. An Example of an Exponential Distribution, mean of 100.

E. CONCLUDING REMARKS

This chapter has explained simulation in general, discrete event simulation in

particular, and described in detail the generation of random variates for use in discrete

event simulations. The next chapter will explain how discrete event simulation and

random variate generation have been added directly to SmartNet [Ref. 1, 2, 3, 4].

46

IV. THE SMARTNET SIMULATOR

A. INTRODUCTION

This chapter explains changes and enhancements made to the original Smart-

Net simulator1 [Ref. 16]. The use of Discrete Event Simulation in the SmartNet

simulator is discussed in Section C. Section D describes how we went about alleviat-

ing the limitations of the original SmartNet simulator.

B. BACKGROUND INFORMATION

As we saw in Chapter II, SmartNet is a very capable scheduling framework

with numerous and powerful operational modes. One of those modes is the SmartNet

simulator mode. The simulator itself has powerful features that make it a useful tool;

however, it also possesses certain limitations2.

C. DISCRETE EVENT SIMULATION AND THE SMART-
NET SIMULATOR

The SmartNet simulator permits the operation of all aspects of SmartNet to be

simulated using discrete event simulation. As we saw in Chapter III, when performing

discrete event simulation, we need to identify events that trigger both the advancement

of simulated time and the collection of system state variable data. Two of the events

currently tracked by the SmartNet simulator are:

1. Job Start: This event occurs when a job is started (the actual execution of
the job is simulated when SmartNet is run in simulator mode) on a machine
in accordance with the schedule created by SmartNet.

2. Job End: This event occurs when job execution completes.

'The explanation of SmartNet provided in Chapter II provides more detailed definitions of many
terms found in this chapter.

2Several of these limitations have been corrected via this research. Those changes are discussed
within this chapter and in Appendices B and C.

47

These are two of the the most important events to SmartNet's run-time performance

because they are the crucial components of the execution of the schedule that SmartNet

creates3. These two events bracket a job's run-time, a duration that can take anywhere

from micro-seconds to several days, depending upon the job and the machine. As a

job begins, the time of its Job Start event is recorded and reported. When that same

job completes (a Job End event), the run-time duration of that job is reported, and

the simulation clock advanced to that point. In SmartNet simulation mode, the job

does not actually execute, but a simulated run-time is used instead. The result is the

ability to simulate the execution of a schedule that might take several days to run if

the jobs were allowed to actually execute, but which takes several minutes instead.

Figure 13 is an example demonstrating both the strength of discrete event simulation

in SmartNet and illustrating event occurrences.

Unfortunately, we do not know what the exact run-time duration of a particular

job on a particular machine would be. When SmartNet is actually running, start and

finish times of jobs reflect actual wall clock time4. In this case, run-times are real.

However, because the simulator does not actually execute jobs, an estimate of the

actual run-time duration is needed.

1. Advantages of the SmartNet Simulator

Using the SmartNet simulator provides definite advantages, both from the as-

pect of experimental capabilities and from the aspect of design. We already mentioned

its capability to simulate the execution of complex schedules in several minutes that

would, in reality, require days to complete. This capability gives SmartNet research-

ers the opportunity to compare the performance of different scheduling algorithms.

Furthermore, there are design advantages because the simulator mode is built directlv

3 While the creation of a near-optimal schedule is the true benefit gained from using SmartNet, it
is not an event on which we concentrate in our simulation experiments.

*\Vall clock time is time as we perceive it throughout our day-to-day activities It is the time we
ktfp on the clocks in our home.

48

Real Time versus

Simulated Time Advance

in the SmartNet Simulator

Real Time 07:42:10

Job 2 Ends

Job 3 Begins

Simulated Time set to

00:12:20

Real Time 07:42:03

Job 1 Begins

Simulated Time set to

00:00

Real Time 07:42:07

Job 1 Ends

Job 2 Begins

Simulated Time set to

00:01:15

Real Time 07:42:12

Job 3 Ends

Simulated Time set to

00:20:30

Figure 13. Real Time versus Simulated Time in the SmartNet Simulator. Three jobs,
scheduled on one machine. The figure depicts simulated time advancement, real time,
and event occurrences.

into SmartNet, helping the researcher to place a greater degree of confidence upon

their research results. When using the SmartNet simulator, we are actually running

SmartNet in simulation mode. This is important for two reasons. First, the simulator

is an integral part of SmartNet, as opposed to being a removable segment of code or

another application altogether. This means that the schedule, scheduling algorithms,

database, default files, and inter- and intra-process communication resulting from or

used by SmartNet in true operational mode are also used by SmartNet when run in

simulation mode. Second, any and all changes to SmartNet source code, to include

updates, implicitly change or update the simulator. There is no need for a duplication

of effort, with one team working on improving SmartNet and another team working

49

on improving a simulation of SmartNet [Ref. 2]. We have an economy of effort that

results in a better simulation tool.

2. Limitation of the Original SmartNet Simulator

The original SmartNet simulator had one major limitation. As we have seen,

the simulator uses Expected Time to Complete (ETC) values for each job/machine

pair, provided in the database, to build the schedule. Schedule-building is the intended

use of the ETC values. As a first attempt, the original simulator was built to use the

ETC values found in the database as the simulated job run-time duration. This meant

that simulated jobs always ran for the exact amount of time they were scheduled to

run. In reality, even when a job is the only load on all of the resources, the non-

determinism associated with reading from/writing to disks and memory results in

two different run-times for the same job with the same input. It is very difficult to

exactly predict job run-times.

Therefore, our simulator should be able to simulate run-times of jobs according

to run-time distribution characteristics found in various compute environments. We

know that if a job is run repeatedly on a specific machine, it will almost never complete

with the same duration. For example, if we run JGB1 1000 times on MACHINE-A, we

may see 1000 different run-times. These 1000 run-time durations can be characterized

by the distribution that they form. This distribution is specific to J0B1 running on

MACHINE-A5; J0B1 running on MACHINE-A might always take at least 741.67 seconds

to complete. The distribution of the completion times above 741.67 seconds might

approximate an exponential distribution with mean 2.97.

5J0B1 running on MACHINE-B may have an altogether different run-time distribution. This is
particularly true if HACHINE-B and MACHINE-A are machines with different architectures or with
different processing capabilities.

50

D. ALLEVIATING THE SMARTNET SIMULATOR LIM-
ITATION

The SmartNet simulator needed to be modified so that the scheduled jobs that

it simulates do not always execute for exactly the mean run-time. Specifically, we

needed to alter the simulator so that run-time durations are not always identical to

the ETC values used to create the schedule. The simulated run-time durations need to

vary; however, they need to vary realistically. This should be done by incorporating

run-time distribution data into the generation of simulated run-times. We have made

these changes; they are presented in the following section.

1. Enhancements Made to the SmartNet Simulator

We enhanced the SmartNet simulator to allow job run-times to be derived from

a run-time distribution. Doing so allowed jobs to be run with durations that varied

in a well-defined way and was not always equal to the ETC values. The ETC values

are either the mean of historical run-time durations or user estimates. Permitting jobs

to run for non-ETC times entailed changes to both the simulator itself as well as to

the I/O routines that read and write the SmartNet database. We added the ability

to specify, within the database, not only a job's mean run-time, but also its type

of distribution (recognizing both Gaussian and exponential distributions for reasons

explained later) and both its second and third moments.

Due to the modular fashion in which SmartNet is built, the number of changes

that we had to make to the actual code, above and beyond adding our own libraries,

were few. However, we did spend a substantial amount of time reading the SmartNet

code, identifying and fixing bugs, and correcting its Makefiles to operate correctly at

our site [Kef. IT]. Appendices B and C provide detailed explanations of the files that

we altered and created. We also enumerate the changes that we made to to each file.

In our explanations in Appendices B and C, we name the enhanced and added files

relativ«- to the SOLARIS directory, which is where the SmartNet source code is installed.

We will assume that these files will be located in the SOLARIS/src/sn/program/

51

subdirectory, unless otherwise explicitly stated.

E. CONCLUDING REMARKS

With our enhancements, we now have a simulator that gives more realistic

performance than the original version. We can alter characteristics of the run-time

distribution for any and all job-machine pairs. Further, we have the ability to add

additional distribution types with relative ease, since the random number generators,

distribution name, and 1st, 2nd, and 3d moments are already included in the database

during the simulation.

52

V. EXPERIMENTS

A. INTRODUCTION

This chapter explains the simulation experiments we performed on SmartNet

using the SmartNet simulator. The initial goal of the simulation experiments was to

determine whether using intelligent scheduling would be beneficial, even if the jobs

that were scheduled did not run for exactly the amount of time that we expected. In

particular, we were concerned about whether it would still be beneficial to use intelli-

gent scheduling if one or several jobs run for a substantially different amount of time

than expected. Because determining a perfect schedule is an NP-complete problem,

SmartNet is a scheduling framework for heterogeneous high performance computing

that contains many different (polynomial) scheduling heuristics [Ref. 1]. These in-

clude several 0(mn2) Greedy Algorithms 1, an 0(mn) Fast Greedy Algorithm, an

0(mn) Limited Best Assignment (LBA) Algorithm, an 0(mn) Opportunistic Load

Balancing (OLB) Algorithm, and a variable complexity genetic algorithm. SmartNet

pioneered the use of intelligent schedulers that accounted for both the Expected Time

to Complete (ETC) of a job on each different machine and the expected load on each

machine. In our simulation experiments we use the 0(mn2) Greedy Algorithms, the

0(mn) Fast Greedy Algorithm, the OLB Algorithm, and the LBA Algorithm. All

of the algorithms, except the OLB Algorithm, use the ETC value to compute the

schedule. The LBA Algorithm does not take into account the expected load on the

machines. The primary reason for this study is because jobs rarely execute for ex-

actly the ETC time, which in SmartNet's case is generally the average of previous

run-times with the same compute characteristics [Ref. 5]. This difference between

actual and predicted run-times often occurs because all of the compute characterist-

1 If an administrator installs SmartNet so that it uses these Greedy algorithms, SmartNet computes
schedules for each of three different Greedy based algorithms and implements the one whose predicted
performance is the best.

53

ics [Ref. 5] are not known or enumerated by the designer of the users program, and

because the time to access memory and/or a disk is stochastic and not deterministic.

In those cases where one or more of the jobs being scheduled have run-times that

could differ substantially from the expected time, we need to determine whether there

is still an advantage to using an algorithm that makes use of expected run-times or

whether a computationally simpler algorithm that does not require looking up ETC

values, such as Opportunistic Load Balancing (OLB), might not yield equivalently

good performance.

As we began investigating this problem, we noticed that, for different ETC

matrices2, the performance of the various algorithms differed drastically. Therefore, in

addition to our originally planned study, we categorized certain types of heterogeneity

and ran experiments for many of these categories.

We ran our experiments using the SmartNet simulator mode rather than ac-

tually executing jobs under SmartNet. The simulator mode both gave -us greater

control over the input parameters and allowed us to complete more experiments in a

reasonable amount of time. We begin this chapter with an explanation of the para-

meters we varied in the experiments. These parameters include both the distributions

and various categories of heterogeneity. In Section C, we describe the simulation

experiments that we performed, present the data, and explain our results. Finally,

we discuss the theoretical performance limits of the SmartNet scheduling algorithms,

compare the performance of SmartNet's 0(mn2) Greedy Algorithm with its 0(mn)

Fast Greedy scheduling algorithm, investigate the dependence of the performance of

SmartNet's various algorithms on the arrival order of job requests, and finally examine

the performance of some of SmartNet's algorithms when the matrix representing the

job-niachirw KT(* values is of mixed heterogeneity.

2An ETC matrix represents estimated performance of all the different jobs on all the different
available niarhin«*v A specific element of the matrix represents Expected Time to Complete of a
specific job (row) on a specific machine (column).

54

B. PARAMETERS

As we developed the simulation experiments performed for this thesis, we found

a need to specify two sets of parameters per experiment:

1. The run-time distributions used, and

2. the category of heterogeneity involved.

In order to determine some realistic job/machine run-time distributions that

we would input into the SmartNet simulator for our experiments, we executed some

programs on various parallel processors a statistically significant number of times

and analyzed their run-time distributions. We describe these experiments in detail in

Section 1. We expound fully on our categorization of job/machine heterogeneity in

Section 2.

1. Job Run-time Distributions

In Chapter III, we explained why job-machine run-times are typically not con-

stant, but rather vary according to some distribution. We also discussed how we

enhanced the SmartNet simulator to generate simulated run-time durations from a

specified distribution, thereby permitting the simulation to more accurately reflect the

true behavior of jobs. Testing the performance of SmartNet when the run-times of

jobs are drawn from a particular distribution is essential to this thesis; but first we

had to determine some realistic distributions that.we would use in our simulations.

Therefore, we repeatedly executed some parallel and sequential programs, gathered

run-time statistics, and analyzed them.

We performed several experiments using the NAS Benchmarks [Ref. 18]. The

N AS Benchmarks were used to determine the types of run-time distributions that may

be typical for at least some jobs on some machines. We needed to determine sample

parameters for these run-time distributions so that they could be reproduced by the

SmartNet simulator. We used distributions and parameters observed during these

NAS Benchmark tests for the run-time distributions in our simulation experiments.

55

While performing these tests, we controlled the following environmental characterist-

ics.

• Server location. We ran experiments where the executable and input data
and the output generated were located on the executing machine, as well as
experiments where all of this data was located on a shared file server.

• Network and server load. When the executable and data were obtained from a
file server, we ran experiments where both the network and the file server were
both heavily and lightly loaded.

• Uni- or Multiprocessor. We ran some experiments where the programs had
been compiled and executed on only a single processor of our Silicon Graphics
multiprocessor computers, and other experiments where the programs were
compiled and executed on multiple processors of the same machines.

• Amount of memory. We ran the jobs on two different multiprocessor Silicon
Graphics machines. They each contained substantially different amounts of
memory. One, caesar, had 64 MBytes and the other, elvis, had 192 Mbytes.

• Processor speed, caesar has four 200 Mhz MIPS R4400 processors, while
elvis has four 150 Mhz MIPS R4400 processors.

We utilized a Silicon Graphics (SGI) Challenge-L multiprocessor machine and a SGI

Onyx multiprocessor machine (elvis) throughout these experiments. They both ran the

same version of the IRIX64 operating system, version 6.2. We used two machines so

that the performance characteristics and run-time distributions of the jobs run in these

experiments would provide us with a bigger picture of job run-time characteristics.

Table V summarizes the configurations of the machines caesar and elvis.

The jobs that we used throughout these experiments were from two sources:

NASA's reference implementation for some of the NAS Benchmarks, and our own im-

plementations of other NAS Benchmarks that met the NAS Benchmark criteria. Four

of the tests use some version of the NAS Integer Sort (IS) Benchmark, implemented

either in parallel on four processors, or in single processor mode. Two other tests

used the NAS Embarrassingly Parallel (EP) Benchmark run on a single processor.

We now explain our experiments and their results.

56

caesar elvis
Type Machine SGI Challenge L SGI Onyx

Processor Speed 200 MHz 150 MHz
Processor Type MIPS R4400 MIPS R4400

Number of Processors 4 4
Amount of Memory 64 Mbytes 192 Mbytes
Secondary Unified

Instruction/Data Cache 4Mb 1 Mb

Table V. Configuration of SGI machines caesar and elvis.

a. Integer Sort, Executed on Four Processors

This experiment examined the run-time distribution of a version of

the NAS Integer Sort Benchmark executed on four processors. We implemented the

integer sort using a counting sort [Ref. 6, pages 175-178] algorithm. We used Sil-

icon Graphic's light weight process (thread) support functions, including mfork(),

to implement our version of this benchmark. Below, we provide pseudo-code for the

counting sort.

The number of initial values to be sorted (TOTAL_KEYS), which range

between 1 and MAX_KEY, are stored in the array key_array. The algorithm first counts

how many of each of the different values between 1 and MAX_KEY there are, storing the

count in the corresponding element of the array count _array. When the algorithm

completes, f inal_array will contain the original values but in sorted order.

for i = 1 to MAX.KEY count_array[i] = 0

for j = 1 to TOTAL.KEYS
count_array[key_array[j]] = count_array[key_array[j] + 1]

comment: count_array[i] now contains
the number of elements equal to i

for i = 2 to MAX.KEY
count_array[i] = count.array[i] +count_array[i - 1]

comment: count_array[i] now contains
the number of elements less than or equal to i

57

for j = TOTAL.KEYS down to 1
f inal_array[count_array[key_array[j]]] = key_array[j]
count_array[key_array[j]] = count_array[key_array[j]] - 1

comment: final.array now holds the sorted keys

The actual code that we executed on the SGIs in shown in Appendix D.

We ran this sort across a heavily loaded network, obtaining both the

executable and data from a file server that was also heavily loaded. When run on

caesar, the run-time distribution, for 100 executions, appears Gaussian. Figure 14

shows a histogram of this distribution. When run on elvis, the run-time distribution,

again for 100 executions, appears exponential and is shown in Figure 15. We note that

the truncation of the exponential distribution shown in Figure 15 occurs at approxim-

ately 3.0. That means that the sort had to run for at least 3.0 seconds before stopping.

The distribution that we see very closely matches an exponential distribution with a

mean of around 0.20, translated 3.0 seconds to the right. We expect that many jobs

would have a distribution similar to this, because all jobs have to run at least some

amount of time3.

In these experiments, we also see that memory size, and so, the need

to swap to local disk, can have a definite effect upon the run-time distribution of a

job. The integer sort on elvis completes, on average, 30% sooner than the same job

on caesar. We note that, in this case, the amount of memory has more influence on

the run-time of the job than does the speed of the processor. Of primary importance,

however, is the observation indicating that the same job, running on two different

machines, not only has different mean run-times, but the distribution of run-times is

different, yielding a Gaussian-like distribution on one machine and an exponential-like

distribution on the other. ■

3An exponential distribution is truncated at 0.0. If applied, without translation, in this case, that
would mean there is the possibility of near-zero run-time.

58

O"
a

16
Parallel Counting Sort on Caesar

i

<?' "fcaesar.dat" .^..

14 100 Samples

Loaded network

?. -

12 Mean: 9.093

Sigma: 0.0983

*
"

10 « 4; -

8 0 -

6 \ -

4 p -

2 4 -

n •

,o.

— 'V ' i i I

Ö—- ■■».

—^4
8.8 8.9 9 9.1 9.2

Run-time, seconds
9.3 9.4

Figure 14. Forked Counting Sort, caesar.

b. Integer Sort, Single Processor

This experiment is the same as that discussed in the last section, with

the exception of being run on a single processor instead of being distributed across

four processors. Although a slightly different C++ implementation was used, see

Appendix D, we again based our program on the counting sort pseudo-code presented

earlier.

When the integer sort was run on caesar, the run-time distribution was

not easily characterized; however, it appears related to a Gaussian distribution. The

histogram of the distribution, shown in Figure 16, is multi-modal, which indicates

that multiple distributions may be present. While this experiment does not provide

us with definitive results, it does point to the fact that run-time distributions can be

quite complex.

When the sequential integer sort was run on elvis. the run-time dis-

tributions were also multi-modal. Figure 17 shows a histogram of this run-time dis-

59

e.

Parallel Counting Sort on Elvis

"felvis.dat" n

100 Samples

Loaded network

Mean: 3.04

Sigma: 0.234

* B- =■4 B Ö B-
3.2 3.4 3.6 3.8 4

Run-time, seconds
4.2 4.4 4.6

Figure 15. Forked Counting Sort, elvis.

tribution, which is also not easy to characterize. The multiple modes again suggests

two different distributions which exist under perhaps different run-time specific con-

ditions. We suspect that these conditions are related to changes in the network and

server loads.

Once again, this set of experiments' showed us that additional memory

can greatly enhance run-time performance. The tests on elvis ran 700% faster than

those tests run on caesar, which has the faster processors. The tests also show that

run-time distributions can be very complex, and may be difficult to reproduce in a

simulation. Although this thesis' experiments did not use such complex distributions,

they should be modeled in future work.

c. Embarrassingly Parallel NAS Benchmark

The next set of experiments that we describe compared the run-time

distributions of compute intensive jobs run from local disk to those run across the

network from a file server. The tests that we describe in this section were executed

60

Counting Sort on Caesar, Single Processor

ty\ y\
7.5 7.6 7.7 7.8

Run-time, seconds
8.1

Figure 16. Counting Sort, caesar, single processor.

only on caesar because elvis did not have sufficiently large local disk available. We

used the reference implementation [Ref. 18], from NASA, of the NAS Embarrassingly

Parallel (EP) Benchmark. This implementation uses the portable message passing

interface(MPI) [Ref. 19] to parallelize the code. The tests we ran, however, were

compiled to be executed on a single processor4. The EP Benchmark was run 100

times for each test.

Figure 18 shows the run-time distribution of the EP Benchmark run

100 times when the executable is stored on caesar's local disk. This distribution

appears exponential. We see the same effect here as we saw in the integer sort run on

four processors5. There is a shift of 741 seconds to the right, after which we see an

exponential distribution with mean 2.72.

4The MPI mechanism is still utilized in the EP Benchmark when it is compiled for a single
processor.

5The number of samples at the far left end of the distribution are small enough when compared
to the total number of samples to be considered a statistical fluke. The data point is included for

61

30
Counting Sort on Elvis, Single Processor

l\ "selvis.dat" -s—

25 100 Samples /

Loaded network m

-

20
Mean: 1.053

Sigma: 0.0988
-

15 -

10 - K -

5 ■ I \ \

0 1 B ' D—cr*— Tl 1 D—B—B—B—O^^T] ' 1 ' Q

0.885 0.89 0.895 0.9 0.905 0.91 0.915 0.92 0.925 0.93 0.935
Run-time, seconds

Figure 17. Counting Sort, elvis, single processor.

We also examined the run-time distribution of the same EP Benchmark

code when executed on caesar but obtained across a lightly loaded network from a

lightly loaded file server. Figure 19 shows the histogram from 100 EP Benchmark

run-times. The run-time distribution appears to be truncated Gaussian6. Like the

experiment above where the EP Benchmark was stored on local disk, the truncation

value reflects the minimum time that it takes to run this EP Benchmark when the

executable must be obtained from our particular file server over our local network.

That truncation appears again at 741 seconds. The difference here, though, is that

there is a different distribution of run-times throughout the range of values. We

attribute this to the influence of other loads on the network and file server on the total

compute time for reach job.

completeness.
fin this thesis, we sometimes use the term "truncated Gaussian" to refer to what is technically an

F.rlang or Gamma distribution. Both Erlang and Gamma distributions are strongly related to both
Gaussian and exponential distributions.

62

80
epAl NAS Benchmark on Caesar

I i i i i i

"epAl-caesar.dat" -o-

70 j\ -

60 100 Samples

Code on Machine; no network involved

-

50 Mean: 743.72

Sigma: 1.57

40 -

30 - : -

20 - i
«;

-

10 - ■ -

n «• i 1 '» e-J e i e-i e i ■■ *"'—■ o
740 745 750 755 760 765

Run-time, seconds
770 775 780

Figure 18. epAl NAS Benchmark, Executable Residing on Local Disk.

2. Categories of Heterogeneity

The other parameter that we need to examine and that we describe in this sec-

tion concerns the category of heterogeneity we use in our experiments. We quantify

the categories of heterogeneity according to two axes, one axis representing the job

heterogeneity and the other axis representing machine heterogeneity. A heterogeneous

computing environment is commonly thought of as a network of machines of differing

or similar architectures, often having, at the very least, differing performance charac-

teristics such as processor speed, quantities of cache, and amount of main memory.

For exam pit-, two machines may be able to execute the same job, but one machine may

execute that job an order of magnitude faster than the other machine. If the machines

are nearly ident ical. then there is very little heterogeneity amongst the machines. If the

machines an- vastly different, then the collection of machines is very heterogeneous.

Our categorization of heterogeneity encompasses this common-sense concept, but is

more general in scope and more technically rigorous in its definition.

63

35

30

25

20

15

10 -

5 -

742

epAl NAS Benchmark on Caesar
1 1 1 1 1 1

"epAl-aquarius.dat" -a—

\ 100 Samples

- \ Run over network

\ Mean: 743.717

- \ Sigma: 1.568

- \

- X.

1 1 i i i i \

743 744 745 746
Run-time, seconds

747 748 749

Figure 19. epAl NAS Benchmark, Files obtained over a lightly loaded network.

However, both machines and jobs must be considered in any good charac-

terization of computational heterogeneity. Jobs, like machines can be either very

heterogeneous, slightly heterogeneous (e.g., one instantiation of a C++ compiler and

another instantiation of the same C++ compiler executing with a higher specified level

of optimization) or homogeneous (as we might expect to execute on special-purpose

hardware). As an example, we consider a collection of jobs that is to be scheduled. If

all the jobs are identical, e.g., all compiling the same source code and using the same

specified run-time parameters, there is no heterogeneity amongst the jobs. If the jobs

are all vastly different, then the jobs are very heterogeneous.

Therefore, we use two axes, one representing the heterogeneity of jobs and the

other representing the heterogeneity of machines, to categorize the heterogeneity of a

computing system. The relationship of job and machine heterogeneity is depicted in

Figure 20, part (a).

We know that SmartNet uses estimates of the run-times of its different jobs

64

V c
M
O u
t> .w
i> a
o

i-s

A Hi-Lo

0
Hi-Hi

0
Quadrants of

1 leterogeneity

Lo-Lo

0
Lo-Hi

0
© ^

Jobs

Machine Heterogeneity

Machines

Planes of Consistency

(a) (b)

Figure 20. Quadrants of Heterogeneity and Categories of Consistency. Part (a) shows
the two dimensional relationship of heterogeneity between jobs and machines. Part
(b) shows the third dimension, consistency, and the numerous planes of consistency
that can exist in different scenarios.

on its different machines to build a schedule detailing what jobs should run on which

machine. For our simulation experiments, heterogeneity is introduced through setting

appropriate parameters in the SmartNet database (See Appendix A). Specifically,

heterogeneity of both jobs and machines is introduced into SmartNet through ap-

propriately setting the ETC values of each job-machine combination present in the

database. The actual database is quite complex, containing internet addresses of ma-

chines and (optionally) the longitudinal and latitudinal coordinates of those machines

As such, we will represent its heterogeneity information in a more easily understood

matrix format. An example of such a matrix is shown in Table VI.

65

Machine
Job 1 2 3 4 5

1 mean 30034 11 239 30097 533
2 mean 25 1003 8619 75 65037
3 mean 1078 93 1950 204001 8081
4 mean 35096 9501 29 2582 1000
5 mean 63 45055 1074075 11533 15

Machine

Job 6 7 8 9 10
1 mean 69 42799 1396 52453 4652
2 mean 30093 4723 11372 16333 287
3 mean 233 9 193 566 63526
4 mean 75019 23333 782 1134 1705
5 mean 403 207 6374 304291 666

Table VI. High-Job, High-Machine Heterogeneity Matrix.

For Table VI, we note that the average variance7 for both the rows and the

columns is very large, on the order of 1010. Furthermore, we note that the distribution

of both the column and row variances is unimodal. These facts indicate that the

average job-machine run-times shown in this table fall at a point whose coordinates

correspond to both High-Job Heterogeneity and High-Machine Heterogeneity (See Hi-

Hi in Figure 20). In contrast, a matrix where the average variance for both the rows

and the columns might be on the order of 10, would correspond to both lower machine

and lower job heterogeneity (See Lo-Lo in Figure 20).

Our simulation experiments were built to examine four combinations of het-

erogeneity. It requires approximately 72 hours, not including setup time, to run

a complete simulation experiment8 and approximately six hours to run a Baseline

7Thc variiiti<-r-h referred to here are variances of the run-time values in the ETC matrices.
8A rompM»- simulation experiment requires that SmartNet build and execute 15 schedules for

each database and UV four different command files.

66

experiment9. We first chose to examine matrices representing four extreme values in

our coordinate system. These four combinations can be thought of as quadrants of

heterogeneity.

• High-Job, High-Machine Heterogeneity (Hi-Hi). All jobs perform very differ-
ently on all machines. As noted above, the variances for our complete matrix
in Table VI, of both jobs and machines, are on the order of 1010.

• High-Job, Low-Machine Heterogeneity (Hi-Lo). Each individual job performs
similarly on all machines; however, no jobs perform similarly. For our sample
matrix in Appendix E, the variance of jobs is on the order of 102, while the
variance of machines is on the order of 108.

• Low-Job, High-Machine Heterogeneity (Lo-Hi). All jobs perform similarly on
the same machine; however, the jobs obtain different performance on different
machines. For our sample matrix in Appendix E, the variance the variance of
jobs is on the order of 10°, while the variance of machines is on the order of
107.

• Low-Job, Low-Machine Heterogeneity (Lo-Lo). All jobs perform similarly on
every machine. For our sample matrix in Appendix E, the variance of both
jobs and machines is on the order of 10°.

There is a third dimension in the relationship between job and machine het-

erogeneity, however, which we call consistency. Consistency refers to the performance

similarities of all jobs across machines. If all jobs perform best on the same machines

(and subsequently perform worse on the same machines) then the schedule being ex-

ecuted is very consistent. We expect this situation to be common in some engineering

laboratories where initially all machines might be workstations bought from the same

manufacturer, with the same amount of memory and types of processor(s). As time

goes on, machines are upgraded. A processor is added. Memory is added. But, typic-

ally, the machine with the fastest processor would also contain the most memory and

the most cache. For now, we view this as adding a discrete axis to our already existing

9A Baseline experiment consists of SmartNet building and executing one schedule for a single
database and each of the four different command files.

67

two axes of heterogeneity, one which represents just two, 2-dimensional planes: con-

sistent and inconsistent. Future work is needed to determine how we might quantify

this dimension as a continuous axis. Figure 21 shows the existence of consistency

between two jobs and four machines. Conversely, if jobs perform well on different

TIME
FOR

EXECUTION

Z\

/\

z±
A JOB

Z\ JOB 2

MACfflNEl MACHINE3
MACHINE2 MACHINE4

Figure 21. Consistency between two jobs and four machines. Both jobs perform better
on the same machines.

machines, and poorly on different machines, then the schedule being executed is in-

consistent. Figure 22 shows inconsistency between two jobs and four machines. We

depict consistency, the third dimension of heterogeneity, in Figure 20, part (b).

To be brief, our nomenclature only includes mention of consistency if the mat-

rix we are dealing with is consistent. In other words, when the term "High-Job,

High-Machine Heterogeneity" is used, the matrix we are using is inconsistent. If

the term "High-Job, High-Machine, Consistent Heterogeneity" is used, that matrix is

consistent.

68

TIME

FOR

EXECUTION Z± z±
ZN,

J0B1

JOB 2

MACfflNEl MACHINE3
MACHINE2 MACHINE4

Figure 22. Inconsistency between two jobs and four machines. The jobs perform
differently on the different machines; there is no consistency of performance.

C. SIMULATION EXPERIMENTS

We performed two simulation experiments on SmartNet, aimed at examining

how well the scheduling algorithms performed when the jobs scheduled did not execute

for exactly the mean (of the previous run-times) specified in the SmartNet database.

We first ran Baseline experiments that compared the performance of SmartNet's vari-

ous algorithms for the different categories of heterogeneity, without considering con-

sistency. Following that, we identified the Baseline matrices for which the 0(mn2)

Greedy Algorithm out-performed both the Opportunistic Load Balancing (OLB) Al-

gorithm and the Limited Best Assignment (LBA) Algorithm. We term the matrices

in this class to be significant matrices. We then ran experiments for consistent

matrices that corresponded to the significant matrices, that is, we ran additional

Baseline experiments using matrices that were identical to the significant matrices,

69

except that the contents of each row was sorted, from smallest to largest10. We term

the sorted version of these matrices as consistent significant matrices. Finally, for all

significant matrices, both consistent and inconsistent, we ran additional simulation

experiments where the jobs did not execute for exactly the mean of the previous run-

times; however, in one case the run-time distribution was assumed to be Gaussian,

and for another case, it was assumed to be exponential. The details of the experiments

are discussed in the following subsections.

Although the database (matrix) values for the experiments differed greatly, the

conduct of the experiments was similar throughout. We now describe the features that

were common to all of the experiments.

• Database Format. Although the job/machine heterogeneity differed for all
databases created, each database contained mean run-times for each of five
different jobs on each of ten different machines.

• Data Collection. Except for the Baseline experiments, all experiments in which
the actual run-time of a job could differ from the predicted run-time of that
job were executed 15 times. In each run, a different value was used to seed the
random number generator that was used to generate the simulated "actual" run-
time duration. The total time required to execute each schedule was summed
and the average was computed. Multiple seeds were used to ensure that our
results were not skewed11. We only ran the Baseline experiments one time,
as the execution of this schedule was always the same (because jobs ran for
exactly the predicted run-times).

• Scheduling Algorithms. We examined the performance of four scheduling al-
gorithms, which are built into SmartNet, during each simulation experiment.
These algorithms were explained in Chapter II and are listed below.

— Opportunistic Load Balancing (OLB)

— Limited Best Assignment (LBA)

— Greedy, an 0(mn2) algorithm

10We note that the average variance of each column is reduced by this sorting, but, as an example,
for our High-Job, High-Machine Heterogeneity matrices, even the consistent matrices had an average
column variance on the order of 1010.

nThis is a common method to reduce the influence of a single random number generation sequence
that may be biased.

70

— Fast Greedy, an 0{mn) algorithm

Both the Greedy and Fast Greedy scheduling algorithms were pioneered by
SmartNet. The LBA Algorithm is also contained in HeNCE [Ref. 20] and the
OLB Algorithm is the only algorithm available in most resource management
systems such as Condor, LoadLeveler, and NQE. SmartNet contains all of these
algorithms, which are of different complexity, because SmartNet is a scheduling
framework and different algorithms are appropriate for different environments.
(See also previous work done by Benton and Lemanski on scheduling of network
broadcasts [Ref. 9].)

Job Request Format. When SmartNet is run in simulation mode, jobs are
requested via a command file. The jobs can be requested either in groups or
sequentially. For example, if we want to request j ob4 to be executed three
times, and job5 to be executed 15 times, a grouped request would ask for
job4 to be run three times, and for job5 to be run 15 times. To accomplish
the same thing when jobs are submitted sequentially, we might request single
executions of two different jobs in the order job5, job4, job5, job4, job4,
and then 13 more single requests of job5. We looked at SmartNet scheduling
algorithm performance when jobs were requested to be run in group format
and randomly sequential format; however, the majority of our experiments were
generated using randomized sequential requests. This was done because the
order of job request affects the schedule. The Fast Greedy Algorithm maps and
schedules the jobs on machines in the order in which they are submitted. The
Greedy Algorithm uses the order to break ties. We chose to execute mostly
singular requests both because they more closely mimic a real environment
where different jobs are submitted by different users and because we wished to
examine whether these algorithms performed better or worse when sequential,
as opposed to grouped, requests were submitted.

Job Request Sets. In order to ensure different results from the grouped method,
we generated two random sequences of 125 job requests, which we will call
125-1 and 125-2, where each individual request was chosen according to a
uniform random distribution from among five different jobs. We also generated
two more random sets, this time of 500 job requests, calling them 500-3 and
500-4. We did this to look at performance variations between job request
ordcrings. as well as to examine any performance differences that might occur
because fewer or more jobs were requested.

Actual Run-time Distributions. When we generated run-times that were differ-
ent from the mean predicted run-times, we ran experiments for both Gaussian
and exponential distributions.

Based upon our experiments with the NAS IS and EP Benchmarks above, we
chose to implement a translated distribution with mean of 3.0 in our subsequent

71

simulation experiments. That is, we added the expected time to compute for
a given job/machine pair, less the amount needed to keep the mean from
changing, to a value drawn from an exponential distribution with mean of
3.012. That is, the simulated run-times were generated using code represented
by the following pseudo-code.

— X is the ETC of the job, available from the SmartNet database.

— Y = X — 3.0 (The 3.0 is taken from the experiments discussed previously.)

— Z is the random variate generated from an exponential distribution with
mean 3.0.

— If ETC > 3.0, Run-time-duration =Y + Z.

— If ETC < 3.0, Run-time-duration — Z.

— Return Run-time-duration.

The actual code for this function is contained in Appendix C.

Again, based upon our earlier experiments described in Section 1, we chose to
implement a truncated Gaussian distribution in our simulation experiments.
We chose to truncate left of the mean at the mean less one sigma. Below is
the pseudo-code for the algorithm we used to obtain a random variate from a
truncated Gaussian distribution for run-time duration.

— a = y/2nd „moment.

— while Run-time-duration > Ist-moment — a

* Generate random variate X from Gaussian distribution.

* Run-time-duration = X

— Return Run-time-duration.

The pseudo-code describes code used in the function generate_normal(),
which can be found in Appendix C.

1. Baseline Experiments

These experiments were used to record SmartNet's performance when each

job executed for exactly the amount of time for which it was scheduled. The Baseline

experiment results show that there are circumstances where the Greedy and Fast

Greedy Algorithms perform comparable to either OLB or LBA. Complete results

12In later experiments, we will also permit the mean for the exponential distribution to depend
upon the job/machine pair.

72

from all of the Baseline experiments can be found in Appendix F. In this section,

we provide graphical interpretations of typical SmartNet performance for a subset of

the experiments. We note that if the run-time of an algorithm is not included in a

graph below, it performed at least an order of magnitude worse than the included

algorithms, and was omitted so that we could more readily distinguish between the

remaining algorithms.

• High-Job, High-Machine Heterogeneity. See Figure 23. For the High-Job,
High-Machine Heterogeneity matrix that we presented in Table VI, we see
that Greedy and Fast Greedy perform comparable to LBA. Since LBA is a
slightly less compute intensive scheduling algorithm, it may make sense to use
the LBA scheduling algorithm instead of Greedy or Fast Greedy in such cases.
The figure also shows how poorly the OLB Algorithm performs compared to
the other three.

Baseline Hi-Hi Results
125-1

greedy
Iba fast greedy

Figure 23.

High-Job, Low-Machine Heterogeneity. See Figure 24. For our matrix chosen
from the High-Job, Low-Machine Heterogeneity extreme, we saw that OLB
performed just about as well as the Greedy and Fast Greedy Algorithms. OLB
is also a computationally simpler scheduling algorithm. In this case, then, it
may make sense to use the OLB scheduling algorithm instead of the Greedy
or Fast Greedy Algorithms.

73

CO

C o

140

120

100

CD

E
c

DC

Z3
o

80

60

40

20

Baseline Hi-Lo Results
125-1

olb greedy fast greedy

Figure 24.

• Low-Job, High-Machine Heterogeneity. See Figure 25. For our matrix chosen
from the Low-Job, High-Machine Heterogeneity extreme, we saw that both the
Greedy and the Fast Greedy Algorithms perform much better than OLB or
LBA.

Baseline Lo-Hi Results
125-1

1000
■o

o 800
o
CD
c/3 600 c
a>
E 400

'+-*

c
rr

200

0
Iba greedy fast greedy

Figure 25.

74

• Low-Job, Low-Machine Heterogeneity. See Figure 26. For this matrix, both
the Greedy and Fast Greedy Algorithms again perform comparable to OLB.

1200

w 1000

8 800
CO

— 600
CD

E
~ 400

^ 200

0

Baseline Lo-Lo Results
125-1

olb Iba greedy fast greedy

Figure 26.

We recall that consistency is the third dimension in the relationship between job

and machine heterogeneity. We chose to examine two categories of heterogeneity along

the consistency axis: High-Job, High-Machine, Consistent Heterogeneity, and Low-

Job, High-Machine, Consistent Heterogeneity. These two categories are among some

of the computing environments likely to be found today. When organizations purchase

computers, they usually buy many similar machines. These machines get upgraded

or replaced as money becomes available or as equipment breaks. Occasionally, more

expensive, specialized computers are purchased in small numbers. These are added

to the environment. This typically results in consistent behavior amongst machines

— that is, there will be some machines that all jobs run well on, and some machines

that all jobs run slower on. The results of the Baseline experiments implied that the

most interesting run-time behavior would be found in the above two categories. We

recognize that the other categories merit investigation, but are outside the scope of

75

this present thesis. We note that for both of these categories, the variance of the jobs

and machines remains similar to that found in their inconsistent counterparts.

• High-Job, High-Machine, Consistent. See Figure 27. For our matrix chosen
from this category of heterogeneity, Greedy and Fast Greedy perform better
than either the OLB or LB A Algorithms.

Baseline Hi-Hi-Consistent Results
125-1

2500

cr 500

Iba greedy fast greedy

Figure 27.

• Low-Job, High-Machine, Consistent. See Figure 28. Again, for our matrix
chosen from this category of heterogeneity, Greedy and Fast Greedy perform
better than either the OLB or LBA Algorithms.

To briefly summarize the experiments we described above, we see, then, that

from these six matrices, chosen from categories that represent the extreme ends of

heterogeneity, the Greedy and Fast Greedy Algorithms develop schedules that are

worthy of the extra compute time they required in three cases. Based upon these

results, we opted to only'further evaluate the Low-Job, High-Machine; High-Job,

High-Machine, Consistent; and Low-Job, High-Machine, Consistent matrices in the

remaining tests.

76

Baseline Lo-Hi-Consistent Results
125-1

greedy fast greedy

Figure 28.

2. Simulation Experiments where Jobs Ran for Times
Different from the Predicted Run-times

This set of experiments examined the performance of the SmartNet scheduling

algorithms when job run-times differed from the ETC values that were used to develop

the schedule. For these tests, we used the enhancements that we made to the SmartNet

simulator, described in Chapter IV. Using these enhancements, we were able to input

the type of run-time distributions that the jobs being scheduled would have. Using

the experiments described in Section B of this chapter, we determined the specific

parameters needed to instantiate the distributions we might find in typical compute

intensive jobs. We simulated jobs with both exponential and truncated Gaussian

run-time distributions.

a. Exponential Distribution Experiments

The results of these experiments compare the performance of the various

SmartNet scheduling algorithms when all jobs have an exponential run-time distri-

bution. We recall from Section B of this chapter that the sample run-times from

those experiments closely fit a shifted exponential distribution with mean 3.0. The

77

individual results from the exponential simulation experiments, which are consistent

with the conclusions that we make in this section, can be found in Appendix F in

Table XIX.

Exponential Lo-Hi Results
500-4

Baseline
Exponential

Iba fast greedy
greedy

Figure 29.

Exponential Hi-Hi-Consistent Results
500-4

CO

CZ
O
£ OT
03 "O
CO c

CO
co

O

10

8

a>

c:

EC

HI Baseline
□ Exponential

Iba fast greedy
greedy

Figure 30.

78

Exponential Lo-Hi-Consistent Results
500-4

Iba

JHJ
■ Baseline
□ Exponential

greedy
fast greedy

Figure 31.

When the results of these experiment are compared to the Baseline

results, we see that jobs with exponential run-time distributions with mean 3.0 have

completion times comparable to the Baseline results. Figures 29, 30, and 31 show

these comparisons for the matrices we used in our simulations. These figures show

that the schedules built by the SmartNet scheduling algorithms are still effective even

though the actual run-time of a given job on a given machine can differ greatly from

its corresponding ETC value.

b. Truncated Gaussian Experiments

These experiments were designed to examine the performance of the

SmartNet scheduling algorithms when all jobs had truncated Gaussian run-time dis-

tributions. As in the previous experiment, this test takes advantage of the enhance-

ments made to the SmartNet simulator. While the schedule was built using ETC

data, the simulated run-times generated by the SmartNet simulator are taken from

a truncated Gaussian distribution. In Section B, we discussed the characteristics of

the truncated Gaussian run-time distribution characteristics obtained from running

the NAS EP Benchmark. We determined from those experiments that truncation oc-

79

curred left of the mean at roughly Ist-moment — V'2nd.moment, or the mean less a.

Throughout this experiment, the mean, or lstjmoment, was the ETC value for the in-

dividual job/machine pairs, and the 2ndjmoment we set at 300% of the lstjmoment,

or 3 x mean, to determine whether, if the variance was very large for all jobs, the

Greedy and Fast Greedy Algorithms still performed much better than both the LBA

and OLB algorithms. Any negative run-times that were generated occurred to the

left of the truncation point, and so were not used in the experiments. The individual

results from these experiments are included in Appendix F in Table XX.

Truncated Gaussian
Lo-Hi Heterogeneity Results

500-3

R
un

-ti
m

e
in

 s
ec

on
ds

Th

ou
sa

nd
s

■ Baseline
E T-Gaussian

Iba greedy fast greed) f

Figure 32.

The results in Figures 32, 33, and 34 show that the schedules are finish-

ing up to 25% later than the schedules executed in the Baseline experiments. This is

not unexpected, as truncation will shift the mean of the resulting distribution to the

right. The results also show that the Greedy and Fast Greedy scheduling algorithms

still perform better than the OLB and LBA Algorithms when job run-time distribu-

tions are truncated Gaussian with very large variances. Our experiments imply that

is may be worthwhile to update the schedule as it is being executed to minimize the

effect of the large job variances that result from run-time distributions with very large

80

Truncated Gaussian
Hi-Hi-Consistent Heterogeneity Results

snn-a
Ru
n-
ti
me

 i
n
se
co
nd
s

Th
ou
sa
nd
s

O

K)

*»

O)

CO

O

h

■ Baseline
ED T-Gaussian

Iba fast greedy
greedy

Figure 33.

variance, in this case, with variances of 300% of the mean. This claim is justified

because preliminary evidence indicates that the observed 25% increase in the mean

is not fully accounted for by the effects of truncation. This may warrant reschedul-

ing because of its relatively low cost, especially for schedules involving many more

Truncated Gaussian
Lo-Hi-Consistent Results

snn-3

Ru
n-
ti
me

 i
n
se
co
nd
s

Th
ou
sa
nd
s

O

-*

M

CO

-U

C

1 »

■ Baseline
E] T-Gaussian

#J

Iba
greedy

fast greed y

Figure 34.

81

machines and many more jobs than used throughout these simulation experiments.

D. DISCUSSION

While performing the simulation experiments described previously in this chapter,

we came across other aspects of SmartNet's performance that warranted examination.

We first examine the performance of the SmartNet scheduling algorithms when com-

pared to theoretical bounds. We follow that with a specific comparison of the Greedy

and Fast Greedy Algorithms throughout all the simulation experiments. We then

compare the performance the Greedy and Fast Greedy Algorithms when the jobs

were submitted according to a uniform random distribution with the performance of

those algorithms when the submitted requests are sorted and grouped according to

job. Finally, we present another matrix with High-Job, High-Machine Heterogeneity

characteristics, but which performs differently than expected.

1. Theoretical Limits

SmartNet's Greedy and Fast Greedy scheduling algorithms consider both the

time for each job to complete on each machine, as well as the current load on each

machine when computing a schedule. Both Greedy and Fast Greedy compute near-

optimal schedules in polynomial time. The NP-completeness of this scheduling prob-

lem and others, though, means that it would require exponential time to compute

schedules that are optimal and that polynomial time schedulers can only approach this

optimal. However, we are still interested in determining how close all the Baseline

completion times are to the mathematical minimum. We now examine that issue for

each of our six matrices that we enumerated above.

Assuming that we could examine one schedule every nanosecond, it would

require more than 1093 years to determine, through exhaustion, which schedule would

require the minimum amount of time to execute for one of our smallest experiments.

For this reason, we instead use a less tight bound, though still a bound, that we now

describe. We computed this bound, which we call the theoretical Best Case Time,

82

using the following method.

1. From the list of jobs submitted, determine how many of each job are being
scheduled. This results in a job count for each job.

2. For each job, multiply the job count by the minimum amount of time that
job could execute given that it was always assigned to its best machine, also
assuming that no other type of job is assigned to that machine. This results in
a min group time for each job.

3. Sum the min group times.

4. Divide the sum by the number of machines. The result is the Best Case Time
for the schedule to execute.

For each matrix, we computed the Best Case Time, and compared that time

to the Baseline time. The comprehensive results are shown in Table XXI, located in

Appendix F. Table XXI shows us that we get closest to theoretical Best Case Time

Baseline Versus Theoretical Minimum
Hi-Lo Heterogeneity

%
 B

as
el

in
e

R
un

-ti
m

e
O

ve
r T

he
or

et
ic

al
 M

in
m

um

o

 c

b

 P

olb greedy fast greedy

Figure 35. Theoretical Best versus Baseline Completion Time, High-Job, Low-
Machine Heterogeneity. This data depicts the percentage difference between the the-
oretical Best Case Time and the Baseline completion time.

performance when schedules are created with our High-Job, Low-Machine and Low-

Job, Low-Machine Heterogeneity databases. Figure 35 contains the High-Job, Low-

Machine Heterogeneity comparison. Figure 36 contains the Low-Job, Low-Machine

83

Baseline Versus Theoretical Minimum
Lo-Lo Heterogeneity

0.3

olb greedy fast greedy

Figure 36. Theoretical Best versus Baseline Completion Time, Low-Job, Low-Machine
Heterogeneity. This data depicts the percentage difference between the theoretical Best
Case Time and the Baseline completion time.

Heterogeneity comparison. All of the other matrices show at least a 100% increase in

run-time duration over the Best Case Time. This is because the machine heterogeneity

is low, which means that the jobs all run fairly well on all machines. Low machine

heterogeneity gives the algorithms more good choices of machines to schedules jobs

upon. Whenever we have high machine heterogeneity, there are fewer near optimal

machine choices for the jobs, and some jobs have to be run on machines that they do

not perform well on. These results seem to indicate that the theoretical Best Case

Time can be approached if the machines being utilized are very similar.

2. 0{mn) Fast Greedy versus 0(mn2) Greedy

While performing the simulation experiments discussed previously, we saw the

opportunity to compare the performance of two of the scheduling algorithms pioneered

by Smart Net. The Greedy Algorithm has a complexity of 0{mn2), while the Fast

Greedy Algorithm has a complexity of 0(mn). What we wanted to know is how much

of a performance gain we see when we invest in the more complex Greedy Algorithm.

84

This investment can be considerable for very large and complex schedules, and can

have a significant effect upon overall SmartNet time of execution.

03
03

Ö
0.08

in 0.06
Ll_

03 0.04
> o
>.
03
03

0.02

0
o
^o -0.02

Greedy versus Fast Greedy
Baseline experiments

hihi
hilo

lohi hihi-con
lolo lohi-con

Figure 37.

Greedy versus Fast Greedy
Exponential experiments

lohi hihi-con lohi-con

Figure 38.

Additional results are shown in Table XXII, located in Appendix F. Figures 37,

38. and 39 compare the performance of the Greedy to the Fast Greedy Algorithm

85

0.05

-0.01

Greedy versus Fast Greedy
Truncated Gaussian experiments

lohi hihi-con lohi-con

Figure 39.

for the the Baseline, exponential, and truncated Gaussian experiments. We averaged

these run-times across all four sets of jobs. Figure 37 shows that Greedy schedules

complete faster than Fast Greedy schedules for the High-Job, Low-Machine; Low-Job,

High-Machine; Low-Job, Low-Machine; and Low-Job, High-Machine, Consistent cat-

egories of heterogeneity, but that Fast Greedy schedules complete faster for High-Job,

High-Machine; and High-Job, High-Machine, Consistent categories of heterogeneity.

Figure 38 shows that, for our experiments, when Greedy outperforms Fast Greedy, the

gain is never more than 15%. What this tells us is that the better schedule execution

time gained by using the 0(mn2) Greedy Algorithm may not be worth the extra com-

putational effort. Depending upon the time required to develop a schedule with the

Greedy Algorithm, it may be more economical13 to use the Fast Greedy scheduling

algorithm. This thesis does not attempt to resolve that issue, as additional but related

research needs to be performed that examines the completion times of schedules built

using the two algorithms under many other different categories of heterogeneity. The

question that needs to be answered is: Does a minimum of 15% decrease in schedule

13Economical from the standpoint of compute time required to build a schedule.

86

execution time warrant the use of a 0(mn2) algorithm over a 0(mn) algorithm?

3. Grouped Submissions versus Uniformly Distributed,
Sequential Submissions

Earlier in this chapter, we discussed the method we used throughout our sim-

ulation experiments to request jobs to be run by SmartNet in simulation mode. We

requested one of five different jobs, one at a time, repeatedly, via a command file,

for a total of either 125 or 500 jobs. The jobs that were requested were chosen in-

dependently from a uniform distribution, so we call this method of choosing jobs the

Sequential Method. We also described another method of requesting jobs, which we

call the Grouped Method. Using the Grouped Method, jobs are requested in groups

via the command file. Jobl could be requested to run 25 times, which would be equi-

valent to requesting Jobl to run once, but list that request 25 times in a row in the

command file. During the course of our experiments, we became interested in know-

ing how schedules performed when jobs were requested with the Grouped Method as

compared to their being requested in a random order using the Sequential Method.

Specifically, we compared the performance of the Greedy Algorithm against the Fast

Greedy Algorithm. We also varied, in other ways, the order in which the grouped

jobs were requested in the command file, as we thought that may make a difference.

We set up four command files, discussed below. In all cases, each request was chosen

from the same group of 5 jobs.

• 125-up: 125 jobs requested in increasing order jobl through job5, 25 repeti-
tions of each job.

• 125-down: 125 jobs requested in decreasing order job5 through jobl, 25 re-
petitions of each job.

• 500-up: 500 jobs requested in increasing order jobl through job5, 100 repeti-
tions of each job.

• 500-down: 500 jobs requested in decreasing order job5 through jobl, 100
repetitions of each job.

87

Figure 40 shows how much faster Greedy schedules executed than the Fast Greedy

schedules when using the Grouped Method of job requests. As before, a positive

percentage means that the Greedy schedule executes faster than the Fast Greedy

schedule.

Grouped versus Random Job Request
Greedy versus Fast Greedy

<3 -0.05

Random (Baseline)
Grouped

O r- O JQ .Q

■^ — — CO CO
U U
CO CO

"? O

Figure 40. Greedy versus Fast Greedy, Grouped Method. This figure shows how much
faster schedules built by the Greedy Algorithm finish executing versus schedules built
by the Fast Greedy Algorithm. Positive values mean that the Greedy schedule is
executed faster than the Fast Greedy schedule.

The results shown in Figure XXIII show significant differences between the

two job request methods. The Sequential Method has Fast Greedy schedules complet-

ing before Greedy schedules under High-Job, High-Machine Heterogeneity; however,

the Grouped method has Greedy schedule executing almost 20% faster than the Fast

Greedy schedule. We see a similar contradiction for High-Job, High-Machine, Con-

sistent.

Figure 41 shows that the performance of the Greedy Algorithm was not affected

by the way that jobs were requested. For both the Grouped and Sequential methods,

Greedy performed about the same. Figure 42 shows that the performance of the Fast

Greedy Algorithm was slightly affected by the order in which jobs were requested.

88

Greedy Algorithm Performance
Grouped vs. Sequential Methods

2000

</>
"g 1500
o

1000

tr. 500
■~1

^1

■ grouped
El sequential

o
o

c o u o u

Figure 41. Greedy Performance; Grouped and Sequential Methods. Greedy performed
about the same for both the Grouped and Sequential Methods.

4. Mixed Heterogeneity Matrices

Previously in this chapter we discussed the characteristics of High-Job, High-

machine Heterogeneity. We noted that the distribution of the variances of the columns

(machines) in the matrix was unimodal, and that the average variance for both rows

and columns was on the order of 1010.

We first thought that the magnitude of the variance was a simple way to char-

acterize the category of heterogeneity. It turns out that this is not the best way to

measure heterogeneity. We consider Table VII. Table VII includes row and column

variances. The average row and column variance is on the order of 1010. If we use only

these variances, we might conclude that this matrix represented a High-Job, High-

Machine Heterogeneity matrix. However, the last five machines are all very similar,

and have a variance of 79.3. In fact, the distribution the column variances is bimodal.

One mod»- is around 79.3, while the other is on the order of 1010. What the matrix in

Figure VII represents is a High-Job, High-Machine Heterogeneity matrix combined

with a Low-Job. Low-Machine Heterogeneity matrix.

89

Fast Greedy Algorithm Performance
Grouped vs. Sequential Methods

2000
en

§ 1500
o
CD
c/J

3
cc

1000

500

o
o

■ I
n lY»l

o u
c o u

■ grouped
Ü3 sequential

Figure 42. Fast Greedy Performance, Grouped and Sequential Methods. Fast Greedy
performed slightly worse for both the Grouped and Sequential Methods.

When we ran our Baseline experiments on the Mixed Heterogeneity matrix in

Table VII, we saw that both Greedy and Fast Greedy outperformed OLB and LB A

by at least an order of magnitude. Recall that when we ran our Baseline experiments

on our High-Job, High-Machine matrix, that Greedy and Fast Greedy performed

similarly to LBA, while outperforming OLB. Also, when we ran the Baseline experi-

ments on our Low-Job, Low-Machine Heterogeneity matrix, Greedy and Fast Greedy

performed similarly to OLB.

These results show that row and column variance of a matrix are not suit-

able statistical characterizations of the categories of heterogeneity. In this thesis, we

propose that the number of modes must also be considered. In this thesis, we primar-

ily concentrate on matrices where both the row and column variances have only a

single mode. Conclusions concerning other matrices, where either the row or column

variances have multiple modes is beyond the scope of this thesis.

90

Machine

Job 1 2 3 4 5
1 mean 100,000 10 100 30000 500
2 mean 25 1000 1200 75 65000

3 mean 1000 33 1900 200000 8000

4 mean 35000 9001 20 2500 100
5 mean 50 15000 1000000 11500 15

variance 1.88 x 109 4.64 x 107 2.0 x 1011 7.28 x 109 8.01 x 108

Machine

Job 6 7 8 9 10 variance

1 mean 11 12 13 14 15 1,02 xlO9

2 mean 26 27 28 29 30 4.19 x 108

3 mean 34 35 36 37 38 3.96 x 109

4 mean 21 22 23 24 25 1.22 x 108

5 mean 16 17 18 19 20 9.94 x 1010

variance 79.3 79.3 79.3 79.3 79.3

Table VII. A Mixed Heterogeneity Matrix. The average row and column variance is
on the order of 1010.

E. CONCLUSION

This chapter has presented a considerable amount of detailed information about

the experiments performed for this thesis. We explained the job distributions we chose

to implement, as well as why we chose them. We also explained how we categorized

heterogeneity. We presented our Baseline experiments and the results obtained, as well

as the results from simulations where the jobs ran for times other than the predicted

times. We examined how the Baseline results compared to the theoretical Best Case

Time, and compared the performance of SmartNet's Greedy Algorithm to its Fast

Greedy Algorithm, both when the job submissions were grouped as well as when

they were individually submitted. We found that SmartNet embodies algorithms that

performed well in all cases and began work on determining which of SmartNet's

schedulers should be used for each of the various categories of heterogeneity.

91

92

VI. SUMMARY AND FUTURE WORK

A. SUMMARY

This thesis examined the effect of exponential and truncated Gaussian run-time

distributions on the performance of SmartNet. In order to perform our experiments,

we first had to enhance the original SmartNet simulator so that simulated job run-

time durations could be non-deterministic. This non-deterministic behavior must be

dictated by the type of run-time distribution that a specific job is designated as having.

The result of this effort was a SmartNet simulator that behaves realistically within

the bounds of the run-time distribution parameters we specified and implemented.

With our enhanced version of the SmartNet simulator, we were able to begin

our examination of SmartNet performance. We discovered early in our experiments

that we first had to determine the categories of heterogeneity that we wanted to exam-

ine. In addition, we needed a reference to which we could compare our results. These

were our Baseline tests, which were tests of SmartNet designed such that the run-

times did not differ from expected time to complete (ETC) values. The Baseline tests

showed, for the specific categories of heterogeneity that were examined, the following

results.

• For High-Job, High-Machine Heterogeneity (Inconsistent), SmartNet's 0(mn2)
Greedy and 0(mn) Fast Greedy scheduling algorithms performed comparable
to the LBA Algorithm, a slightly less complex algorithm than either Greedy
or Fast Greedy. Because of this similarity of performance, we determined that
further examination of Greedy and Fast Greedy scheduling algorithm perform-
ance was not needed for this category of heterogeneity.

• For High-Job, Low-Machine Heterogeneity (Inconsistent), SmartNet's 0(mn2)
Greedy and 0(mn) Fast Greedy scheduling algorithms performed comparable
to the OLB Algorithm, which is also a less complex algorithm than either
Greedy or Fast Greedy. Additionally, OLB does not require the a priori in-
formation that is required by all of the Greedy algorithms (including Fast
Greedy) and the LBA algorithm. The overhead of the Greedy and Fast Greedy
scheduling algorithms is not warranted for this category of heterogeneity.

93

• For Low-Job, High-Machine Heterogeneity (Inconsistent), SmartNet's 0(mn2)
Greedy and 0(mn) Fast Greedy scheduling algorithms performed significantly
better than both OLB and LBA. We determined that further study of Greedy
and Fast Greedy performance was warranted for this category of heterogeneity.

• For Low-Job, Low-Machine Heterogeneity (Inconsistent), SmartNet's 0{mn2)
Greedy and 0(mn) Fast Greedy scheduling algorithms performed comparable
once again to OLB. We determined that additional examination of Greedy
and Fast Greedy scheduling algorithm performance was unwarranted for this
category of heterogeneity.

• For High-Job, High-Machine Consistent Heterogeneity, SmartNet's 0(mn2)
Greedy and 0(mn) Fast Greedy scheduling algorithms once again performed
significantly better than both OLB and LBA. We again determined that further
study of Greedy and Fast Greedy performance was warranted for this category
of heterogeneity.

• For Low-Job, High-Machine Consistent Heterogeneity, SmartNet's 0(mn2)
Greedy and 0(mn) Fast Greedy scheduling algorithms again performed signi-
ficantly better than both OLB and LBA. We again, therefore, determined that
further study of Greedy and Fast Greedy performance was warranted for this
category of heterogeneity.

With our focus on Low-Job, High-Machine Heterogeneity; High-Job, High-Machine

Consistent Heterogeneity; and Low-Job, High-Machine Consistent Heterogeneity; we

began our experiments comparing the performance of the various SmartNet scheduling

algorithms when jobs did not run for the length of time predicted. First, we examined

the performance of SmartNet when the distribution underlying all jobs executed was

exponential. The tests showed that the schedules built by the best SmartNet al-

gorithms were still much better than those built by the less complex, non-intelligent

SmartNet algorithms. Not only does this show that re-scheduling is often not needed

after the initial schedule has been somewhat violated, but also that the overhead in-

volved in using SmartNet's more intelligent algorithms is warranted even when the

run-times of jobs can be significantly different from their predicted run-times.

We next examined the performance of SmartNet when the distribution underly-

ing all jobs executed was a truncated Gaussian run-time distribution. The ETC values

of the jobs were used as the mean, and truncation occurred to the left at mean — a.

94

Variance for these tests was 300% of the mean. Our results show that SmartNet

performance was somewhat affected by jobs whose run-times were from a truncated

Gaussian run-time distribution. We saw up to a 25% increase in the time required to

execute a schedule. Though much of this apparent decrease in performance was an

artifact of our truncation method, some amount of it appears unaccounted for. This

suggests that it may be necessary to recalculate a schedule for jobs that are still wait-

ing to be executed when we have jobs with this run-time behavior. The relatively low

cost of rescheduling may help minimize any resulting decrease in performance low. In

this case, also, we see that the overhead involved in using SmartNet's more intelligent

algorithms is warranted even when the actual run-times of jobs can be significantly

different from their predicted run-times.

As we performed our experiments, we came across other related areas of Smart-

Net performance that we were able to examine. First, we looked at the theoretical

minimum execution time of a schedule and compared that theoretical minimum to

the performance of the four scheduling algorithms we tested. Our results showed that

SmartNet's algorithms often approach the theoretical limits when running tests with

our High-Job, Low-Machine; and Low-Job, Low-Machine categories of heterogeneity.

In all other cases, the algorithms performed at least 100% worse than the theoretical

minimum. We therefore conclude that, for our test environment, SmartNet was able

to build near optimal schedules when the variation in performance of jobs on machines

was low.

Next, we compared the performance of SmartNet's 0(mn2) Greedy and 0(mn)

Fast Greedy scheduling algorithms. We determined that the schedules built with the

Greedy algorithm executed faster than those built with Fast Greedy for High-Job,

Low-Machine Heterogeneity; Low-Job, High-Machine Heterogeneity; Low-Job, Low-

Machine Heterogeneity; and Low-Job, High-Machine Consistent Heterogeneity. The

performance gain was never more than 15%, however, when jobs were submitted in

a random order. For all other categories of heterogeneity, schedules built by the

95

Fast Greedy scheduling algorithm completed faster than those built with Greedy. We

determined that the cost to schedule with the more complex Greedy algorithm may

not always outweigh the performance gain, and that such considerations needed to be

further examined in future research.

We then compared the performance of SmartNet's intelligent schedulers when

jobs were requested sequentially and randomly, which we called the Sequential Method,

against the Grouped Method. Our results showed significant differences in the per-

formance of the Greedy and Fast Greedy scheduling algorithms when these two meth-

ods were used. We conclude that there is a need for both methods to be used within

SmartNet, but that they need to be used appropriately. Further, the differences in

performance between these two job request methods needs to be accounted for when

deciding which scheduling algorithm to use.

Lastly, we examined a Mixed Heterogeneity Matrix. While both the average

row and column variance was on the order of 1010, and so might have appeared to be

a High-Job, High-Machine Heterogeneity matrix, a closer look at the distributions of

the row and column variances showed us this matrix was very different. The distri-

bution of the row and column variances for our first matrix was uni-modal, which we

concluded was characteristic of the High-Job, High-Machine category of heterogeneity.

However, the distribution of the column variances of the second matrix was bi-modal.

We concluded that the existence of more than one mode meant that a matrix was

actually a combination of two different matrices corresponding to two categories of

heterogeneity — in this case, a High-Job, High-Machine matrix and a Low-Job, Low-

Machine matrix. When we compared the results of the Baseline experiment for the

Mixed Heterogeneity Matrix with our High-Job, High-Machine Heterogeneity matrix,

we saw significant differences in the performance of the Greedy and Fast Greedy al-

gorithms. These results helped us determine that categories of heterogeneity could not

be statistically categorized by average row and column variance, but that additional

statistical studv was needed.

96

Overall, we determined that SmartNet's algorithms perform well under the

categories of heterogeneity we identified, and that additional research is needed to

further pinpoint ways to increase performance in the many different computing and

network environments likely to be found in the Department of Defense.

B. FUTURE WORK

There are numerous opportunities for future work related to this thesis. First,

SmartNet performance needs to be further evaluated using additional matrices from

the categories of heterogeneity that we identified as well as with additional examples

of matrices with Mixed Heterogeneity. Additionally, the categories of heterogeneity

most often found in typical environments needs to be further researched. SmartNet

performance needs to be further examined when the jobs' run-time distributions are

different from the ones that we simulated. This creates a need for more study into what

types of distributions we should expect to find in various high performance computing

environments. Further, SmartNet performance should be evaluated when different

jobs execute with different types of run-time distributions. The cost-effectiveness of

SmartNet's 0(mn2) Greedy and 0(mn) Fast Greedy scheduling algorithms needs to

IK* traded off against their performance, and the cost and benefits of rescheduling

should also remain a consideration.

97

98

APPENDIX A. SMARTNET DATABASE
FORMAT

Tables VIII, IX, X, and XI outline the format of the SmartNet database. They

include fields added because of research performed in this thesis.

Site Object Fields Format

site name search key string
description string

latitiude float, global coordinate
longitude float, global coordinate

bandwidth float, in bytes/second (within site)
latency- float, in seconds (within site)
notional integer, 1 or 0 (true or false)
status integer (unused at this time)

Table VIII. Site Object Database Format

Machine Object Fields Format

machine name search key string
architecture string (unused at this time)
IP address standard internet dot notation
description string

location string
relative cost float (unused at this time)

relative performance rate float (unused at this time)
Is the machine notional? integer, 1 or 0 (true or false)

site name string

Table IX. Machine Object Database Format

99

Model Object Field Format

model name search key string
description string
idempotent integer, 1 or 0 (true of false)

The number of compute characteristic
description lines integer

compute characteristic's descriptions,
one line per description string

Table X. Model Object Database Format

Model-Machine Object Fields Format

machine name search key string
model name search key string
group name search key string

distribution type string (ARMSTRONG ADDED)
first moment float (ARMSTRONG ADDED)

second monent float (ARMSTRONG ADDED)
third moment float (ARMSTRONG ADDED)

theoretical compute function equation, producing seconds
theoretical network function equation, producing seconds
theoretical data use function equation, producing bytes

theoretical floating-point function equation, producing Mflops
relative execution rate float (unused at this time)

experiential compute data written to database by smartnet
The number of compute

characteristic description lines integer
compute characteristic's descriptions,

one line per description string
experiential network data written to database by smartnet

Table XI. Model-Machine Object Database Format

100

APPENDIX B. ENHANCEMENTS MADE TO
EXISTING SMARTNET CODE

1. INTRODUCTION

This appendix provides detailed explanations of the changes made to several

SmartNet files. The changes were made in order to enhance the SmartNet simulator.

Chapter IV provides an explanation as to why these changes were required.

2. SERVER/SIMULATOR/JOBSTARTEVENT.CC

This file details the member functions of the JobSt art Event class. There are

only two functions to this class: a constructor, and the function execute(). The

execute () function does several things, but only one thing that we are interested in

changing. The duration that a job is to run in simulation mode was retrieved from

the ETC information provided in the input database. This is where the crux of the

problem with the simulator lay. The duration retrieved is the exactly the same as the

ETC value that the schedule was built from. The function call was:

• job duration = ETC of job provided in database

We changed the above call to:

• job duration = run-time of job calculated from distribution data

The distribution data is provided in the database file (another change). The function

required to calculate the job run-time, based upon this distribution information, is an

addition to the SmartNet simulator code.

101

3. SERVER/SN-LOG/SN-LOG.C

This file is the program code for the SmartNet logger, which listens to various

SmartNet messages and logs specific detail to an output file. This output log file can

then be used to recreate SmartNet runs using the SmartNet replay mechanism. In

the case of the SmartNet simulator, the logger is used to capture run-time and for

scheduling information for later evaluation of SmartNet's performance and behavior.

There were minor enhancements made to this file, but they were important.

We found that the code was not outputting the correct time for the duration that a job

was running in simulation mode. The same was true for the times recorded for jobs to

begin. This stemmed from the use of the ETC value for both scheduling and running

jobs in simulation mode. The changes made involved altering variable accesses in the

following functions:

• JobNoticeStart: access true start time versus time variable t

• JobUpdateDone: report true finish time/duration vice time variable t

102

4. SN-SUBMIT/EXTERNAL.C

This file contains external interface code specific to the sn-submit program. The

sn-submit program must be run to actually submit jobs to SmartNet via command

line. Command line submission must be used in simulation mode, because SmartNet's

graphical user interface does not support simulation mode.

While investigating necessary changes to the SmartNet code, it became evident

that sn-submit was trying to actually start the schedule on the prescribed machines.

This needed to be fixed in order for the simulator to actually be a simulation tool.

We fixed this problem by checking to see whether simulation mode had been set when

smartnet-master was started. The check for simulation mode was performed in the

sn_external_start() function, and was performed as follows:

• If simulation mode is set, return true.

The change allowed sn-submit to run in simulation mode without attempting to actu-

ally start the schedule.

103

5. SN-SUBMIT/SUBMIT.C

After examining and changing the sn-submit/external.C file, it became evident

that we needed to be able to start sn-submit in simulation mode. The file submit. C

contains the main program for the sn-submit application. We needed to add simula-

tion functionality at the command line. Simulation functionality included being able

to use VV-S" as a command line argument to sn-submit. It also included setting

the simulation mode global variable to true. We added the equivalent of the following

pseudo-code.

• Global Integer Variable simulationMode = false;

• If sn-submit includes -S as a command line argument,

- Set simulationMode to true;

- Remove -S from the input argument list;

104

6. SN-SUBMIT/README

This file includes detailed information on how to run sn-submit. We changed

the README file to include information about the ""-S" flag, thus informing the

user how to run sn-submit in simulation mode.

105

7. SERVER/SRC/MODELMACHINE.H

This is the header file for the ModelMachine class. The ModelMachine class

handles all of the characteristics of individual job-machine pairs. Much of the data is

provided via the input database file. The format of the database file is included in

Appendix A.

Runtime distribution information is necessary for each individual model-machine

pair. In order for the user to specify this information (for experimental purposes),

the run-time distribution information had to be read into SmartNet with the model-

machine data. That meant altering the database file format to account for the run-time

distribution data. Altering the database file format meant having to provide variables

to hold the run-time distribution data, along with the functions necessary to retrieve

and manipulate those variables. All of the run-time distribution variables and func-

tions are first seen in ModelMachine. h. The changes made to this file are discussed

below.

Because we referenced specific distribution function information, the distribu-

tion.]! header file, written for this research and discussed later in this chapter, had to

be included. We then added the class data members to hold the run-time distribution

information. These data members were, of course, private. They include:

• Distribution: an Mstring type

• Moment _1: a float to hold the mean, or first moment

• Moment _2: a float to hold the second moment

• Moment _3: a float to hold the third moment

Public data member accessor functions were then declared. These functions include:

• getDistributionO: returns Distribution

• getMoment_l(): returns Moment_1

• getMoment_2(): returns Moment_2

• getMoment_3(): returns Moment J3

106

The above member function definitions were included as inline functions listed after

the class definition. They are simple accessor functions that return the value of the

individual data members.

A method had to be written that would allow a run-time duration to be gen-

erated based upon the new run-time distribution data members. By including it in

the ModelMachine class, we had easy access to the necessary data. Also, when the

actual duration is requested (see server/simulator/JobStartEvent .cc above) it

is accessed via a reference to a ModelMachine type. We added the public member

function getRuntimeQ to provide calculation of the run-time duration.

107

8. SERVER/SRC/MODELMACHINE.CC

This file contains member functions of the ModelMachine class. The class is

defined in ModelMachine .h, discussed previously. Additions made to ModelMachine. cc

include the following.

1. ModelMachine: :init(): Added initialization of run-time distribution data
members:

• Distribution = " "

• MomentJ. = 0.0;

• Moment_2 = 0.0;

• Momenta = 0.0;

2. ModelMachine: :operator= (ModelMachine &mm): Added assignment overload-
ing for run-time distribution data members:

• Distribution = mm.Distribution

• Moment J = mm.MomentJ.

• Moment.2 = mm.Moment_2

• Moment.3 = mm.Moment_3

3. ModelMachine: :getRuntime(): This function was added to allow for the com-
putation of the run-time duration. It returns duration, a DeltaTime type. The
functions generate_normal() and generate_exponential were written for
this research. They are defined in the file distribution.h, which is included
in this file and discussed later in Appendix C. Here is the pseudo-code.

• If Distribution is equal to "normal"

- duration = generate_normal(Moment J, Momenta)

• Else If Distribution is equal to "exponential"

- duration = generate_exponential(Moment_l)

• return duration

4. ModelMachine: :read(): This function needed to be altered to allow for the
run-time distribution information to be read in from the database file.

108

APPENDIX C. ADDITIONAL CODE FOR THE
SMARTNET SIMULATOR

1. INTRODUCTION

The following subsections contain detailed information about the code we wrote

specifically for improving the SmartNet simulator. Each explanation is followed by

the actual code added to the SmartNet simulator.

2. SERVER/ARMSTRONG/MAKEFILE

The files that were written needed to be compiled with the SmartNet package.

This meant creating a Makefile consistent with the Makefile structure resident in the

SmartNet code. This file allows for all of the files below to be compiled whenever the

server is recompiled. Here is the code: Makefile

Makefile for Armstrong's Thesis Code
Used to generate Random Variates for
use by the SmartNet simulator
(last mod: 970518)
Note that comments start with # for this file

which compiler to use
CC = g++

#CC = CC

Directory location of include files
#INCS = -I-L/local/lang/SC2.0.1

INCS =

CFLAGS = $(INCS) -g

What libraries need to be linked

#LIBS = -lm
LIBS =

Project name to be compiled
PROGS =

109

What object files are to be used

OBJS = distribution.© random_generator.o myrand.o

.SUFFIXES: .c .cc .0

.c.o:; cc $(CFLAGS) -c $*.c

.cc.o:; $(CC) $(CFLAGS) -c $*.cc

What is to be compiled

#all : $(PROGS)

all : $(0BJS)

The main object file

#mytest: $(0BJS)

$(CC) -0 mytest $(0BJS) $(CFLAGS) $(LIBS)

Note — there is a tab before the $(CC) above

What are the objects are dependent on

#main.o: main.cc proj2.h
#proj2.o: proj2.cc proj2.h

#main.o: main.cc myrand.h random_generator.h distribution.h
distribution.o: distribution.ee myrand.h random_generator.h
random_generator.o: random_generator.ee random_generator.h
myrand.o: myrand.cc myrand.h

This cleans out everything except the Makefile,

AAAREADME and source files

clean:; rm -f $(PROGS) *.o core

110

3. SERVER/ARMSTRONG/MYRAND.H & MYRAND.CC

The myrand files define a function that uniformly generates random numbers

between 0 and 1. The uniform, randomly generated, number is used by later functions

to access an array of 100 seeds that will assure high periodic randomization of numbers

in another uniform random number generator. The pseudo-code of the myrand ()

function follows.

• static int check = false

• Use system time to seed the system random number generator

• If check is false

— static tester = time(NULL)

— check = true

• Seed the system random number generator with tester

• ix = system random number generator output

• answer = ix/(max random number capable of being generated)

• tester = ix

• return answer

The concept is for time to be used to first seed the random number generator. All

subsequent calls to this function will use the previously generated variable as the seed

because its location is kept intact via the static type. The reason the static typing

was done is because there could possibly be several accesses of the myrand() function

within a single second. Always using time for the seed would cause the same seed to

be used for several myrand () calls. Here is the code: my rand, h

// File: myrand.h
// Bob Armstrong
// 12 March 1997
// This function randomly generates numbers between
// 0 and 1

111

#include <iostream.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

typedef int bobint;

float myrandO ;

myrand.cc

// File: myrand.cc

// Bob Armstrong

// 12 March 1997

// This function uniformly generates random numbers between
// 0 and 1

#include "myrand.h"

#include <debug/Debug.h>

float myrandO

■C

long double ix;
static long int tester;
static bobint check = 0;

// I am seeding the random function with the time
srand((int)time(NULL));

if (!check) {

tester = time(NULL);

//tester = 867875440; // used to provide data consistency in testing
check = 1;

if(Debug::check("al")){
Debug::out() « "Initial seed (time):\t" « tester « endl;;

}
}

srand((unsigned int)tester);

ix = rand(); // make this the next time seed.
float answer = ix/(RAND_MAX);
tester = (long int)ix;

112

if(Debug::check("a5")){
Debug::out() « "Output of myrand:\t"« answer « endl;

}
return answer;

}

113

4. SERVER/ARMSTRONG/DISTRIBUTION.H & DISTRI-
BUTION.CC

The distribution files include most of the functions needed to generate the

various run-time distributions. Functions include normal_01(), generate_normal(),

and generate_exponential().

The function normal_01() uses the polar method for generating normal(0,1)

random variates. It has no parameters, but returns a single normally distributed

random variate. This function is used by the generate_normal () function to generate

Gaussian data based upon the first and second moments.

• While WW is greater than 1.0

- uniformjrandomjnumberA is a Uniform(0,l) random number

- uniformjrandomjnumberA is a Uniform(0,l) random number

- VI = 2 uniformjrandomjnumberA — 1

- V2 = 2 uniformjrandomjnumberJ2, — 1

- WW = VI2 + V22

• End While

. YV - , /-21og(WW) 1 * ~ V ww

• randomjvariateA = YY VI

• randomjvariateJl = YY V2

• Return either randomjvariateA or randomivariateJl

The generate_exponential() function receives the first moment and returns

a run-time duration. As explained in Chapter III, the Inverse Transform method

is used to generate these exponentially distributed variates, because the exponential

function, and its inverse, have a closed form.

• Define EXPONENTIAL-RUNTIME

• While duration is less than or equal to 0.0

— seed = 99 myrand()

114

- random-number = random-generator (seed)

- If first moment is greater than the EXPONENTIAL-RUNTIME

* adjusted = first-moment - EXPONENTIAL-RUNTIME

* duration = -EXPONENTIAL-RUNTIME \og(random-number)

* duration — duration + adjusted

- Else

* duration = —first-moment \og(random-number)

- End If/Else

• End While

• Return duration

In this function, the constant EXPONENTIAL-RUNTIME is a mean gathered

via experiments with the NAS Benchmarks which is applied to the first moment data

specific to the machine/job pair. It is discussed in greater detail in Chapter V.

The generate-normal 0 function receives the first and second moment as its

parameters and returns a run-time duration. This function calls the normal_01 () func-

tion, which generated IID N(0,1) random variates. Implementation of the normal_01 ()

function is simple, as shown in the following pseudo-code.

• A'A' = normaLOlQ

• duration = 0.5 + first-moment + (XX \J' second-moment)

• Return duration

Tin* 0.5 is added to the duration computation to account for rounding errors. This

function can be changed to generate truncated normal data by only allowing the

duration to be returned if it falls within some limit imposed in the code. That limit

may ««ither be hard coded, or it may be dependent upon a constant relationship

Ix-twrrn the first and second moments, which is probably more realistic. The use

of truncated Gaussian is discussed further in Chapter V. The code for these function

is included below, distribution.h

// File: distribution.h

115

// Bob Armstrong
// 4 August 1997
// Thesis code

// This code determines which type of distribution
// the model-machine object carries with it and
// generates a run-time based upon that distribution.

#include <math.h>
#include <string.h>

#include "myrand.h"

#include "random_generator.h"

»include "/users/work3/rkarmstr/S0LARIS/src/sn/lib/spi/DeltaTime.h"

double normal_01();

DeltaTime generate.normal(float, float);
DeltaTime generate.exponential(float) ;

distribution.ee

// File: distribution.ee
// Bob Armstrong
// 4 August 1997
// Thesis code

// This code determines which type of distribution
// the model-machine object carries with it and
// generates a run-time based upon that distribution.

»include "distribution.h"
»include <debug/Debug.h>

/* This is the polar method of generating normal
random variates, discussed in Law and Kelton
"Simulation Modeling and Analysis", pp 490 - 492.

*/
double normal_01()

i
double random.variate;
double vl, v2, yy, ww = 2.0;
int seed;

float random_number_l, random_number_2;

116

while(ww > 1.0) {
seed = int(99 * myrandO);

if (Debug: :check("a2")){

Debug::out() « "Seed in normal_01():\t"<< seed « endl;

}
random_number_l = random_generator(seed);

random_number_2 = random_generator(seed);

vl = 2 * random_number_l - 1;

v2 = 2 * random_number_2 - 1;

ww = vl * vl + v2 * v2;

}

yy = sqrt((-2 * log(ww)) / ww) ;

// Decide which value to return

if(myrand() > 0.5) {
random.variate = vl * yy;

}
else {

random.variate = v2 * yy;

}

if(Debug::check("a4")){
Debug::out() << "Random Variate produced by normal_0l():\t"

<< random,variate << endl;

}
return random_variate;

DeltaTime generate_normal(float moment_l, float moment_2)

{

DeltaTime duration;
double xx;

int checker = 0;

117

double sigma = sqrt((double)moment_2);

if(moment_2 == 0.0) {

duration = moment_l;

}
eise {
while(checker == 0) {

xx = normal_01();

duration = (0.5 + moment_l + sigma * xx);

if((duration > 0.0) kk (duration >= moment_l - sigma)) {
checker = 1;

}

} // end while

} // end else
return duration;

DeltaTime generate_exponential(float moment_l)
{

int seed; // holds seed for random_generator
DeltaTime duration = -100; // returned variable

float adjusted; // moment_l adjusted for EXP.RUNTIME
float random_number; // holds random_generator() value
const float EXP.RUNTIME = 3.0; // exponential mean; CHANGE THIS

// to adjust exponential characteristics.

// Only return a runtime duration > 0.
// Everything takes SOME time to run!
while(duration <= 0){

// Get seed and generate random number
seed = int(99 * myrand());

random.number = random_generator(seed);

118

// If moment_l is greater than the runtime value,

// subtract moment.l and compute the duration from
if(moment.l > EXP.RUNTIME) {

adjusted = moment.l - EXP.RUNTIME;
duration = (int)(- EXP.RUNTIME * log(random.number));
duration += (DeltaTime)adjusted;

} else {
duration = (int)(- moment.l * log(random.number));

}
} // end while

return duration;

}

119

5. SERVER/ARMSTRONG/RANDOM_GENERATOR.H &
RANDOM_GENERATOR.CC

This file contains the functions necessary to generate uniformly distributed IID

U(0,1) random variates. This function is needed by the normalJ)l (), generate Jiormal (),

and generate_exponential() functions found in the distribution files. As has been

previously discussed, a good source of IID U(0,1) random variables is essential to

the success of any random generator. The following code can be found written in

"Simulation Modeling and Analysis," by Law and Kelton. [Ref. 13, pages 454-456] It

is also included below, random-generator.h

/* The following 3 declarations are for use of the random-number
generator rand and the associated functions randst and reandgt for
seed management. This file (named random_generator.c) should be
included in any program using these functions by executing
#include "random.generator.h"
before referencing the functions.
*/

float random_generator(int stream);
void randst(long zset, int stream);
long randgt(int stream);

random-generator.cc

/* File: random_generator.cc
UNIFORM (0,1) RANDOM NUMBER GENERATOR
Stolen by: Bob Armstrong from "Simulation
Modeling and Analysis", by Law and Kelton */

/* Prime modulus multiplicative linear congruential generator Z[i] =
(630360016 * Z[i-1]) (mod{pow(2, 31) - 1)), based upon Marse and
Roberts' portable FORTRAN random-number generator UNIRAN. Multiple
(100) streams are supported, with seess spaced 100,000 apart.
Throughout, input argument "stream" must be an int giving the
desired stream input number. The header file random_generator.h
must be included in the calling program (#include
"random.generator.h") before using these functions.

120

Usage: (three functions)

1. To obtain the next U(0,1) random number from stream "stream,"

execute u = random_generator(stream);

where rand is a float function. The float variable u will contain the next

random number.

2. To set the seed for stream "stream," to a desired value zset,

execute randst(zset, stream);

where randst is a void function and zset must be a long set to
the desired seed, a number between 1 and 2147483646 (inclusive).
Default seeds for all 100 streams are given in the code.

3. To get the current (most recently used) integer in the sequence being

generated for stream "stream" into the long variable zget,
execute zget = randgt(stream);
where randgt is a long function. */

#include <iostream.h>
#include <debug/Debug.h>

/* Define the constants. */

«define MODLUS 2147483647
«define MULT1 24112
«define MULT2 26143

/* Set the default seeds for all 100 streams. */

static long zrng[] =

{ 0,
1973272912, 281629770,
913566091, 246780520,
824064364, 150493284,
233217322, 1911216000,
762430696, 1922803170,
336157058, 1432650381,

68911991, 2088367019,
1774806513, 2132545692,
1351423507, 1645973084,
243649545, 1004818771,
498067494, 2087759558,

536444882, 1663153658,

20006270,
1363774876,

242708531,
726370533,
1385516923,
1120463904,

748545416,
2079249579,
1997049139,
773686062,
493157915,
855503735,

1280689831,
604901985,
75253171,

403498145,
76271663,
595778810,

622401368,
78130110,
922510944,
403188473,
597104727,

67784357,

2096730329,
1511192140,

1964472944,
993232223,
413682397,
877722890,

2122378830,
852776735,
2045512870,
372279877,

1530940798,

1432404475,

1933576050,
1259851944,
1202299975,

1103205531,
726466604,
1046574445,

640690903,
1187867272,
898585771,

1901633463,

1814496276,

619691088,

121

119025595, 880802310, 176192644, 1116780070, 277854671, 1366580350,
1142483975, 2026948561, 1053920743, 786262391, 1792203830, 1494667770,
1923011392, 1433700034, 1244184613, 1147297105, 539712780, 1545929719,
190641742, 1645390429, 264907697, 62038953, 1502074852, 927711160,
364849192, 2049576050, 638580085, 547070247 };

/* Generate the next random number. */

float random_generator(int stream)
{

long zi, lowprd, hi31;

if(Debug::check("a6")){
Debug::out() « "Seed into random.generator:\t" « zrng[stream] « endl;

}

zi = zrng[stream];
lowprd = (zi & 65535) * MULT1;
hi31 = (zi » 16) * MULT1 + (lowprd » 16);
zi = ((lowprd & 65535) - M0DLUS) + ((hi31 & 32767) « 16) + (hi31 » 15);
if(zi < 0) {

zi += M0DLUS;
}
lowprd = (zi &65535) * MULT2;
hi31 = (zi » 16) * MULT2 + (lowprd » 16);
zi = ((lowprd & 65535) - M0DLUS) + ((hi31 & 32767) « 16) + (hi31 » 15);
if(zi < 0) {

zi += M0DLUS;
}
zrng[stream] = zi;
if(Debug::check("a3")){

Debug::out() « "Output from random_generator:\t"
« ((zi » 7 | 1) + D/16777216.0 « endl;

}
return ((zi » 7 I 1) + D/16777216.0;

}

/* Set the current zrng for stream "stream" to zset. */
void randst (long zset, int stream)
{

122

zrng[stream] = zset;
}

/* Return the current zrng for stream "stream" */

long randgt(int stream)
{
return zrng[stream];

}

123

124

APPENDIX D. CODE FOR RUNTIME
DISTRIBUTION TESTS

1. CODE FOR COUNTING SORT

The following code is my implementation of the NAS Integer Sort Benchmark.

It is written to be run on an SGI machine with four processors. The sorting algorithm

used is a parallel version of the counting sort. The code also includes a non-parallel

version of counting sort, which was run to provide a comparison for speedup.

File: parallel4.c

Name: Bob Armstrong
Purpose: This file contains functions executed in the main

procedure that measurement of the counting sort
executed in sequence on one processor, in sequence
forked to one processor, and in parallel forked

to four processors. The code is written for the
SGI Challenge L. Measurements are taken and output
to three files (one for each treatment) for each of
ten runs of the sort.

The code is not to the NPS style guide (sue me).

#include <stdlib.h>
#include <stdio.h>
»include <ulocks.h>
»include <unistd.h>

»include <stddef.h>
»include <sys/types.h>
»include <fcntl.h>
»include <sys/mman.h>
»include <sys/syssgi.h>

»define T0TAL_KEYS_L0G_2 22
»define MAX_KEY_L0G_2 11
»define TOTAL_KEYS (1 « T0TAL_KEYS_L0G_2)

»define HAX.KEY (1 « MAX_KEY_L0G_2)

125

«define CYCLE_C0UNTER_IS_64BIT 1

#if CYCLE_C0UNTER_IS_64BIT
typedef unsigned long long iotimer_t;

#else

typedef unsigned int iotimer_t;
#endif

/* These are globals to make the arrays, which are accessed

randomly, available to all functions. This decreases
the time spent passing pointers.

*/
int key_array[TOTAL_KEYS];

int work_array[MAX_KEY];

int final_array[TOTAL_KEYS] ;

/* This is the LOCK stuff. */

usptr_t* handle = NULL;

ulock.t lock_array[MAX_KEY];

/* These are globals to hold the values in work_array
after the tallys are done in parallel. They
need to be globals because I can only pass 6 parameters
in the m_fork call.

*/
int datal = 0;
int data2 = 0;

int data3 = 0

/* This is Pedro Tsai's way cool precision timer for SGI machines.
It was originally written in C++. With MINOR changes, it is

included here to compile as C code. The units returned by the
gethrtimerO function are picoseconds. Thanks, Pedro!

*/
unsigned int cycleval;

volatile iotimer.t *iotimer_addr;
static int initflag=0;

volatile iotimer_t* initSysTimer()
{

126

 psunsigned_t phys_addr, raddr;

int fd, poffmask;

if (initflag==0)

poffmask = getpagesizeO - 1;

phys_addr = syssgi(SGI_QUERY_CYCLECNTR, &cycleval);

raddr = phys_addr & "poffmask;
fd = openC'/dev/mmem", 0_RD0NLY);
iotimer_addr = (volatile iotimer.t *)mmap(0, poffmask, PR0T_READ,

MAP.PRIVATE, fd, (off_t)raddr);
iotimer_addr = (iotimer_t *)((psunsigned_t)iotimer_addr +

(phys_addr & poffmask));

initflag=l;

}
return iotimer_addr;

}

/* get the hardware counter value */
long long gethrtimeO

{
volatile iotimer_t *timer_addr;

long long counter_value;

/* Initialize the hardware time counter */
timer_addr=initSysTimer();

counter_value=*timer_addr;

return counter.value;

* FUNCTION RANDLC (X, A)
•

* This routine returns a uniform pseudorandom double precision number in the
* range (0, 1) by using the linear congruential generator

127

* x_{k+l} = a x_k (mod 2~46)
*

* where 0 < x_k < 2~46 and 0 < a < 2"46. This scheme generates 2"44 numbers

* before repeating. The argument A is the same as 'a' in the above formula,

* and X is the same as x_0. A and X must be odd double precision integers

* in the range (1, 2~46). The returned value RANDLC is normalized to be

* between 0 and 1, i.e. RANDLC = 2"(-46) * x_l. X is updated to contain

* the new seed x_l, so that subsequent calls to RANDLC using the same
* arguments will generate a continuous sequence.
*

* This routine should produce the same results on any computer with at least
* 48 mantissa bits in double precision floating point data. On Cray systems,
* double precision should be disabled.
*

* David H. Bailey October 26, 1990
*

* IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
* SAVE KS, R23, R46, T23, T46
* DATA KS/0/
*

* If this is the first call to RANDLC, compute R23 = 2 " -23, R46 = 2 " -46,
* T23 =2 * 23, and T46 = 2 " 46. These are computed in loops, rather than
* by merely using the ** operator, in order to insure that the results are
* exact on all systems. This code assumes that 0.5D0 is represented exactly.

*/

/************* RANDLC ************/

/************* portable random number generator ************/

double randlc(X, A)
double *X;
double *A;

{
static int KS;

static double R23, R46, T23, T46;
double Tl, T2, T3, T4;
double Al;
double A2;

128

double XI;
double X2;
double Z;
int i, j;

if (KS == 0)

■C

R23 = 1.0
R46 = 1.0
T23 = 1.0
T46 = 1.0

for (i=l; i<=23; i++)
{
R23 = 0.50 * R23;
T23 = 2.0 * T23;

}
for (i=l; i<=46; i++)
{
R46 = 0.50 * R46;
T46 = 2.0 * T46;

}
KS = 1;

/* Break A into two parts such that A = 2~23 * Al + A2 and set X = N. */

Tl = R23 * *A;

j = Tl;
Al = j!
A2 = *A - - T23 * Al;

/* Break X into two parts such that X = 2~23 * XI + X2, compute
Z = Al * X2 + A2 * XI (mod 2~23), and then
X = 2~23 * Z + A2 * X2 (mod 2"46). */

Tl s R23 * *X;

j = Tl;
XI = j;
X2 = *X - T23 * XI;
Tl = Al * X2 + A2 * XI;

129

j = R23 * Tl;
T2 = j;
Z = Tl - T23 * T2;
T3 = T23 * Z + A2 * X2;
j = R46 * T3;
T4 = j;
*X = T3 - T46 * T4;
return(R46 * *X);

}
/* end randlc(x,a) */

/************* CREATE.SEQ ************/

/* This function creates the sequence of keys that will be sorted
by calling the random number generator previously explained
in this file. It is stored in key_array.

*/
void create_seq(double seed, double a)
{
double x;
int i, j, k;

k = MAX.KEY/4;

for (i=0; i<TOTAL_KEYS; i++)
{

x = randlc(&seed, &a);
x +« randlc(&seed, &a) ;
x += randlc(&seed, &a);
x +■ randlc(&seed, &a);

key_array[i] = k*x;

>

/******************** C0UNTING_S0RT ******************************/

/* This function is used to fill the final_array with the sorted keys.

130

It is not the entire counting sort algorithm.

*/
void counting_sort(begin, end, divl, div2, div3)
int begin;

int end;
int divl;
int div2;

int div3;

{
int ix, aa;

for(ix = end-1 ; ix > begin - 1; ix—) {
aa = key_array[ix];

f inal_array[work_array[aa]-l] = aa;
work_array[aa]—;

}
return;

}

/************************** D0_S0RT ******************************/

/* This function, like counting_sort above, only fills the final_array
with the sorted keys. It is a function meant to be called with
the m_fork() function call specific to SGI machines.

*/
void do_sort(divl, div2, div3, ddl, dd2, dd3)

int divl;
int div2;

int div3;
int ddl;
int dd2;
int dd3;

{
int ix, iy, iw, iz, aa, ab, ac, ad,

wa, wb, wc, wd;
ulock_t* ba,* bb,* be,* bd;

if(m_get_myid() == 0) {

for(ix = divl-1 ; ix > -1; ix—) {
aa = key_array[ix] ;

131

while(ustestlock(lock_array[aa])) {

}
ussetlock(lock_array[aa]);
wa = work_array[aa];
if(aa < ddl) {

final_array[wa-l] = aa;
}else if(aa < dd2) {

final_array[wa + datal - 1] = aa;
}else if(aa < dd3) {

final_array[wa + data2 + datal - 1] = aa;
}else {

final_array[wa + data3 + data2 + datal - 1] = aa;
}
work_array[aa]—;
usunsetlock(lock_array[aa]);

}
}else if(m_get_myid() == 1) {

for(iy = div2-l ; iy > divl-1; iy—) {
ab = key_array[iy];
while(ustestlock(lock_array[ab])) {

}
ussetlock(lock_array[ab]);
wb = work_array[ab];
if(ab<ddl) {

final_array[wb-l] = ab;
}else if(ab<dd2) {

final_array[wb + datal - 1] = ab;
}else if(ab<dd3) {

final_array[wb + data2 + datal - 1] = ab;
}else {

final_array[wb + data3 + data2 + datal - 1] = ab;
}
work_array[ab]—;
usunsetlock(lock_array[ab]) ;

}
}else if(m_get_myid() == 2) {

for(iz = div3-l ; iz > div2-l; iz—) {
ac = key_array[iz] ;
while(ustestlock(lock_array[ac])) {

132

}
ussetlock(lock_array[ac]) ;
wc = work_array[ac];
if(ac<ddl) {

final_array[wc-l] = ac;
}else if(ac<dd2) {

final_array[wc + datal - 1] = ac;
}else if(ac<dd3) {

final_array[wc + data2 + datal - 1] = ac;
}else {

final_array[wc + data3 + data2 + datal - 1] = ac;
}
work_array[ac]—;
usunsetlock(lock_array[ac]);

}
}else if(m_get_myid() == 3) {

for(iw = T0TAL_KEYS-1 ; iw > div3-l; iw~) {
ad = key_array[iw];
while(ustestlock(lock_array[ad])) {

}
ussetlock(lock_array[ad]);
wd = work.array[ad];

if(ad<ddl) {
final_array[wd-l] = ad;

}else if(ad<dd2) {
final_array[wd + datal - 1] = ad;

}else if(ad<dd3) {
final_array[wd + data2 + datal - 1] = ad;

}else {
final_array[wd + data3 + data2 + datal - 1] = ad;

}
work.array[ad]—;
usunsetlock(lock_array[ad]);

>
}
return;

}

/******»•»*••************** set_zero *****************************/

133

/* This function sets every element of the work_array to zero.
This function is meant to be called by the m_fork function
specific to SGI machines.

*/
void set_zero(divl, div2, div3)
int divl;
int div2;
int div3;

{
int ix, iy, iz, iw;

if(m_get_myid() == 0) {

for(ix =0; ix < divl; ix++)
work_array[ix] = 0;

}else if(m_get_myid() == 1) {
for(iy = divl; iy < div2; iy++)

work_array[iy] = 0;
}else if(m_get_myid() == 2) {

for(iz = div2; iz < div3; iz++)
work_array[iz] = 0;

}else if(m_get_myid() == 3) {
for(iw = div3; iw < MAX_KEY; iw++)

work_array[iw] = 0;
}
return;

/************************** verify ** ****************************/

int verify()
{

int ix, check;

for(ix = 1; ix < TOTAL.KEYS; ix++) {
if(final_array[ix] < final_array[ix-l]) {

check = 1;
break;

}
else { check =0;}

}

134

return check;

}

/************************** increment ****************************/

/* This function counts the occurances of a KEY by incrementing the

value of work_array[KEY]. Thusly, work_array[4] will contain a count

of the number of keys that are the number 4. This function is

meant to be called using the SGI function m_fork. It is set up

for parallel execution.

*/
void increment(divl, div2, div3)

int divl;

int div2;
int div3;

■c
int ix, iy, iz, iw, aa, ab, ac, ad;
/*ulock_t ba, bb, be, bd;*/

if(m_get_myid() == 0) {
for(ix =0; ix < divl; ix++){

aa = key_array[ix] ;
while(ustestlock(lock_array[aa])) {

}
ussetlock(lock_array[aa]);
work_array[aa]++;
usunsetlock(lock_array[aa]);

}
}else if(m_get_myid() == 1) {

for(iy = divl; iy < div2; iy++){
ab = key_array[iy] ;
while(ustestlock(lock_array[ab])) {

}
ussetlock(lock_array[ab]);
work.array[ab]++;
usunsetlock(lock_array[ab]);

>

}else if(m_get_myid() -- 3) {

135

for(iz = div2; iz < div3; iz++){
ac = key_array[iz] ;
while(ustestlock(lock_array[ac])) {

}
ussetlock(lock_array[ac]);
work_array[ac]++;
usunsetlock(lock_array[ac]);

}
}else {

for(iw = div3; iw < TOTAL.KEYS; iw++){
ad = key.array[iw];
while(ustestlock(lock_array[ad])) {

}
ussetlock(lock_array[ad]);
work_array[ad]++;
usunsetlock(lock_array[ad]);

}
}
return;

}

/************************** tally ********************************/

/* This function tallys the number of work_array elements less than

or equal to the work_array index. This function is called
by the SGI function m_fork for 4 processors.

*/
void tally(divl, div2, div3)
int divl;
int div2;
int div3;

{
int ix, iy, iz, iw;

if(m_get_myid() == 0) {

for(ix =1; ix < divl; ix++)

work_array[ix] += work_array[ix - 1] ;

}else if(m_get_myid() == 1) {

136

for(iy = divl+1; iy < div2; iy++)
work.array[iy] += work_array[iy - 1] ;

}else if(m_get_myid() == 2) {
for(iz = div2+l; iz < div3; iz++)

work_array[iz] += work_array[iz - 1] ;
}else if(m_get_myid() == 3) {

for(iw = div3+l; iw < MAX.KEY; iw++)
work_array[iw] += work_array[iw - 1] ;

}
return;

/******************** MAIN PROGRAM *******************************/

main()

■C
double xx, aa, zz;
long long duration, end, stop, one, two, three, four, szo, inc, srt, tal;
FILE *true_sequential, *fork_sequential, *forked;

float data;
int ix, iy, yy, dd, ddl, dd2, dd3,

division, divl, div2, div3;
char* lock.file = "lock.file";

unsigned int MAX = 400000;

/* set up output files */
true_sequential = fopen("tsequential.dat", "w");
forked = fopenCforked.dat" , "w") ;

/* Create a sequence of keys to sort */
create_seq(314159265.00, 1220703125.00);

/* calculate array boundaries for key.array final_array */
division = T0TAL_KEYS/4;

divl = division;-
div2 = divl + division;
div3 = div2 + division;

/* calculate array boundaries for work.array */

dd - MAX_KEY/4;

137

ddl = dd;

dd2 = ddl + dd;

dd3 = dd2 + dd;

/* Set up lock configuration and handle information */
usconfig(CONF_INITSIZE, MAX) ;
handle = usinit(lock_file);

/* Initialize the lock_array (first time)*/

for(ix = 0; ix < MAX_KEY; ix++) {

lock_array[ix] = usnewlock(handle);

usinitlock(lock_array[ix]);

}

/* Initialize memory by running the sequential sort once */
m_fork(set_zero, ddl, dd2, dd3);

for(ix =0; ix < TOTAL.KEYS; ix++) {
work.array [key_array[ix]] ++;

}
for(ix =1; ix < MAX.KEY; ix++) {

work.array [ix] += work array[ix - 1];
}
counting_sort(0, TOTAL_KEYS);

/* Run the sort sequentially (single processor)
as a baseline measurement for speedup.

*/

for(iy =0; iy < 1000; iy++) {

end = gethrtimeO; /* start time */

/* initialize work.array to zero */
for(ix =0; ix < MAX_KEY; ix++) {

work_array[ix] = 0;
}

/* count occurances of each key being sorted */
for(ix = 0; ix < T0TAL_KEYS; ix++) {

work.array[key.array[ix]]++;

138

/* count the elements in work_array less than or equal to ix */
for(ix = 1; ix < MAX_KEY; ix++) {

work_array[ix] += work_array[ix - 1] ;

}

/* sort the keys into final_array */
counting_sort(0, TOTAL.KEYS);

stop = gethrtimeO;

/* Verify proper sorting */

if(verify()) {
printf("True Sequential Final-Array (run %d) failed verification!\n", iy);

}
else {
printf("True Sequential Final-Array (run °/0d) passed verification !\n", iy) ;

}

duration = stop - end; /* calculate duration */
data = (float)duration/1000000000; /* convert duration to seconds */
fprintf(true_sequential, "Optimum Sequential sort time is: %f\n", data);

} /* end for */

fclose(true_sequential);

/* set number of processors to 4 */
m_set_procs(4);
/* Initialize memory by running the forked sort once */
m_fork(set_zero, ddl, dd2, dd3);
m_fork(increment, divl, div2, div3);

m_fork(tally, ddl, dd2, dd3);
m_fork(do_sort, divl, div2, div3, ddl, dd2, dd3);

/* Perform the counting sort using forking

and all 4 processors. This is what we
"hope" provides speedup.

*/
for(iy =0; iy < 1000; iy++) {

end = gethrtimeO; /* start time */

139

/* initialize work_array to zero */
m_fork(set_zero, ddl, dd2, dd3);
one = gethrtimeO;

/* count occcurances of each key being sorted */

m_fork(increment, divl, div2, div3);
two = gethrtimeO;

/* count the elements in work_array less than or equal to ix */
m_fork(tally, ddl, dd2, dd3);

three = gethrtimeO ;
/* Record tally sums (at the upper interval limit) in globals */
datal = work_array[ddl - 1]
data2 = work_array[dd2 - 1]
data3 = work_array[dd3 - 1]
four = gethrtimeO;
/* sort the keys into final.array */
m_fork(do_sort, divl, div2, div3, ddl, dd2, dd3) ;

stop = gethrtimeO;

if(verifyO) {

printf ("Fully Forked Final-Array (run */,d) failed verification! \n", iy);
exit(l);

}
else {

printf ("Fully Forked Final-Array (run */,d) passed verification !\n", iy);

}

duration = stop - end; /* calculate duration */
szo = one - end;
inc = two - one;
tal = three - two;
srt = stop - four;

data ■ (float)duration/1000000000; /* convert duration to seconds*/
f printf (forked, "Forked sort time is: 5£f\n", data);
data ■ (float)szo/1000000000;
f printf (forked, "Time spent in set.zero: \t #/,f \n", data);
data ■ (float)inc/1000000000;
f printf (forked, "Time spent in increment :\t */.f \n", data);
data • (float)tal/1000000000;

f printf (forked, "Time spent in tally: \t '/.f \n", data);
data « (float)srt/1000000000;

f printf (forked, "Time spent in do.sort: \t '/.f \n", data);

140

fclose(forked);

return 0;
}

141

142

APPENDIX E. SIMULATION EXPERIMENTAL
DATA

1. HETEROGENEITY QUADRANT DATA

The tables included in this appendix are the "shorthand" matrices refered to

in Chapter V.

Machine

Job 1 2 3 4 5
1 mean 30034 11 239 30097 533
2 mean 25 1003 8619 75 65037

3 mean 1078 93 1950 204001 8081

4 mean 35096 9501 29 2582 1000

5 mean 63 45055 1074075 11533 15
Machine

Job 6 7 8 9 10
1 mean 69 42799 1396 52453 4652

2 mean 30093 4723 11372 16333 287
3 mean 233 9 193 566 63526

4 mean 75019 23333 782 1134 1705

5 mean 403 207 6374 304291 666

Table XII. High-Job, High-Machine Heterogeneity.

143

Machine

Job 1 2 3 4 5
1 mean 25 26 27 28 29
2 mean 175 166 174 167 173
3 mean 3095 3094 3009 3096 3093
4 mean 9900 9899 9898 9897 9896
5 mean 30007 30006 30005 30004 30003

Machine

Job 6 7 8 9 10
1 mean 30 31 32 33 34
2 mean 168 172 169 171 170
3 mean 3097 3092 3098 3091 3099

4 mean 9901 9902 9903 9904 9905
5 mean 30002 30001 30000 30008 30009

Table XIII. High-Job, Low-Machine Heterogeneity.

Machine

Job 1 2 3 4 5
1 mean 5 1003 101 29 2002
2 mean 6 1001 104 25 2001
3 mean 9 1002 102 27 2000
4 mean 8 1000 103 28 2004

5 mean 7 1004 100 26 2003

Machine
Job 6 7 8 9 10

1 mean 69 5500 300 9996 25
2 mean 65 5499 299 10000 22
3 mean 67 5497 298 9998 23
4 mean 66 5498 297 9999 21
5 mean 68 5496 296 9997 24

Table XIV. Low-Job, High-Machine Heterogeneity.

144

Machine

Job 1 2 3 4 5
1 mean 23 22 21 20 24
2 mean 24 23 22 21 25
3 mean 25 24 23 22 26
4 mean 26 25 24 23 27
5 mean 27 26 25 24 28

Machine

Job 6 7 8 9 10
1 mean 25 27 28 31 30
2 mean 26 25 26 28 20
3 mean 27 23 24 25 28
4 mean 28 21 22 22 22
5 mean 29 19 20 19 25

Table XV. Low-Job, Low-Machine Heterogeneity.

Machine

Job 1 2 3 4 5
1 mean 300034 52453 42799 30097 4652

2 mean 65037 30093 16333 11372 8619

3 mean 204001 63526 8081 1950 1078

4 mean 75019 35096 23333 9501 2582

5 mean 1074075 304291 11533 6374 666

Machine

Job 6 7 8 9 10
1 mean 1396 533 239 69 11
2 mean 4723 1003 287 75 25
3 mean 566 233 193 93 9
4 moan 1705 1134 1000 782 29
5 mean 6374 403 207 63 15

Table XVI. High-Job, High-Machine, Consistent Heterogeneity.

145

Machine
Job 1 2 3 4 5

1 mean 9996 5500 2002 1003 300
2 mean 10000 5499 2001 1001 299
3 mean 9998 5497 2000 1002 298
4 mean 9999 5498 2004 1000 297
5 mean 9997 5496 2003 1004 296

Machine
Job 6 7 8 9 10

1 mean 101 69 29 25 5
2 mean 104 65 25 22 6
3 mean 102 67 27 23 9
4 mean 103 66 28 21 8
5 mean 100 68 26 24 7

Table XVII. Low-Job, High-Machine, Consistent Heterogeneity.

146

1.

APPENDIX F. SIMULATION EXPERIMENT
RESULTS

ZERO-VARIANCE SIMULATION EXPERIMENT RES-
ULTS

125-1 Hi-Hi Hi-Lo Lo-Hi Lo-Lo Hi-Hi-Con Lo-Hi-Con
OLB 1,074,104 119,576 10,000 314 204,001 9,998
LBA 783 690,000 883 1,094 2,221 883

Greedy 782 105,620 483 289 1,666 483
Fastgreedy 783 119,454 507 293 1,664 505

125-2 Hi-Hi Hi-Lo Lo-Hi Lo-Lo Hi-Hi-Con Lo-Hi-Con
OLB 1,074,074 122,491 9,996 319 75,019 10,000
LBA 754 750,000 869 964 2,291 869

Greedy 754 109,500 472 288 1,681 472
Fastgreedy 754 122,396 491 299 1,669 494

500-3 Hi-Hi Hi-Lo Lo-Hi Lo-Lo Hi-Hi-Con Lo-Hi-Con
OLB 1,074,075 458,809 9,996 1,230 204,001 9,997
LBA 2,842 3,090,000 3,497 4,240 8,834 3,497

Greedy 2,726 439,018 1,874 1,119 6,514 1,874
Fastgreedy 2,697 458,910 1,931 1,158 6,498 1,931

500-4 Hi-Hi Hi-Lo Lo-Hi Lo-Lo Hi-Hi-Con Lo-Hi-Con
OLB 1,082,723 430,923 9,998 1,235 304,291 9,996
LBA 2,813 2,880,000 3,485 4,300 8,858 3,485

Greedy 2,697 416,990 1,865 1,116 6,527 1,865
Fastgreedy 2,639 430,781 1,930 1,155 6,506 1,924

Table XVIII. Baseline Simulation Experiment Results. Heterogeneity should be read
Job-Machine. Also, "Con" refers to consistency; absence of "Con" means the hetero-
geneity is inconsistent.

147

RESULTS OF SIMULATION EXPERIMENTS WHERE
JOBS RAN FOR TIMES DIFFERENT FROM PRE-
DICTED TIMES.
a. Exponential Run-time Distribution Experiment Res-

ults

125-1 Lo-Hi Hi-Hi-Con Lo-Hi-Con
OLB 9,999.53 203,999.80 9,994.13
LBA 873.27 2,189.73 851.00

Greedy 497.93 1,657.53 489.33
Fastgreedy 523.00 1,643.87 538.93

125-2 Lo-Hi Hi-Hi-Con Lo-Hi-Con
OLB 9,994.80 75,020.47 9,995.93
LBA 854.87 2,289.00 846.40

Greedy 481.80 1,662.13 492.33
Fastgreedy 705.13 1,642.20 502.07

500-3 Lo-Hi Hi-Hi-Con Lo-Hi-Con
OLB 9,995.13 204,001.27 9,995.93
LBA 3,470.33 8,805.07 3,482.00

Greedy 1,905.13 6,504.20 1,899.53
Fastgreedy 1,956.53 6,507.93 1,967.33

500-4 Lo-Hi Hi-Hi-Con Lo-Hi-Con
OLB 9,998.20 304,291.67 9,995.60
LBA 3,458.20 8,854.07 3,459.07

Greedy 1,905.60 6,565.33 1,927.13
Fastgreedy 1,964.80 6,521.60 1,956.33

Table XIX. Exponential Experiment Results for the Low-Job, High-Machine, High-
Job, High-Machine, Consistent, and Low-Job, High-Machine, Consistent categories of
heterogeneity.

148

b. Truncated Gaussian Run-time Distribution Experi-
ment Results

125-1 Lo-Hi Hi-Hi-Con Lo-Hi-Con
OLB 10,032.93 300,807.00 10,066.73
LBA 1,054.13 2,477.47 1,055.40

Greedy 594.93 1,871.87 572.87
Fastgreedy 603.80 1,839.00 594.93

125-2 Lo-Hi Hi-Hi-Con Lo-Hi-Con
OLB 10,029.27 300,053.20 10,045.60
LBA .1,032.07 2,530.53 1,037.87

Greedy 574.20 1,879.87 564.27
Fastgreedy 593.13 1,885.40 603.53

500-3 Lo-Hi Hi-Hi-Con Lo-Hi-Con
OLB 10,092.27 304,570.27 10,045.40
LBA 4,251.40 9,983.20 4,247.00

Greedy 2,298.40 7,288.93 2,295.00
Fastgreedy 2,343.80 7,269.93 2,341.33

500-4 Lo-Hi Hi-Hi-Con Lo-Hi-Con
OLB 10,056.73 1,074,996.07 10,032.47
LBA 4,250.27 9,988.60 4,209.93

Greedy 2,285.47 7,342.80 2,275.73
Fastgreedy 2,357.47 7,304.87 2,336.07

Table XX. Truncated Gaussian Experiment Results for the Low-Job, High-Machine,
High-Job, High-Machine, Consistent, and Low-Job, High-Machine, Consistent cat-
egories of heterogeneity.

149

3. ADDITIONAL EXPERIMENTS
a. Comparison of Baseline Run-time and Theoretical

Best Case Run-time

125-1 Hi-Hi Hi-Lo Lo-Hi Lo-Lo Hi-Hi-Con Lo-Hi-Con
OLB 483512% 14% 11225% 22% 91750% 11222%
LBA 252% 561% 900% 327% 900% 900%

Greedy 252% 1% 7 447% 12% 650% 447%
Fastgreedy 252% 14% 474% 14% 649% 471%

125-2 Hi-Hi Hi-Lo Lo-Hi Lo-Lo Hi-Hi-Con Lo-Hi-Con
OLB 468723% 13% 11402% 25% 32645% 11407%
LBA 229% 595% 900% 278% 900% 900%

Greedy 229% 1% 443% 13% 633% 443%
Fastgreedy 229% 13% 465% 17% 628% 468%

500-3 Hi-Hi Hi-Lo Lo-Hi Lo-Lo Hi-Hi-Con Lo-Hi-Con
OLB 121484% 4% 2758% 20% 22992% 2758%
LBA 221% 605% 900% 315.89% 900% 900%

Greedy 208% 0.24% 435% 9% 637% 435%
Fastgreedy 205% 4% 452% 13% 635% 452%

500-4 Hi-Hi Hi-Lo Lo-Hi Lo-Lo Hi-Hi-Con Lo-Hi-Con
OLB 122131% 3% 2768% 21% 34252% 2768%
LBA 217% 592% 900% 321% 900% 900%

Greedy 204% 0.23% 435% 9% 636% 435%
Fastgreedy 197% 3% 453% 13% 634% 452%

Table XXI. Theoretical Best versus Baseline Completion Time.. This data depicts
the percentage difference between the theoretical Best Case Time and the baseline
completion time. In every case, SmartNet builds a schedule which takes longer to
execute than the theoretical Best Case Time.

150

Greedy versus Fast Greedy Performance

Test Hi-Hi Hi-Lo Lo-Hi Lo-Lo Hi-Hi-Con Lo-Hi-Con
Baseline -0.77% 8.18% 3.88% 3.05% -0.35% 3.86%

Exponential 14.30% -0.66% 4.30%
T-Gaussian 2.48% -0.56% 3.87%

Table XXII. Greedy versus Fast Greedy, Sequential Method 145 . This table shows
how much faster schedules built by the Greedy algorithm finish executing versus sched-
ules built by the Fast Greedy algorithm using the Sequential Method of job request.
Positive values mean that the Greedy schedule is executed xx% faster than the Fast
Greedy schedule.

c. Grouped versus Sequential Job Request Methods

Hi-Hi Hi-Lo Lo-Hi Lo-Lo Hi-Hi-Con Lo-Hi-Con
Grouped Method 19.95% 2.44% 5.37% 8.12% 4.58% 5.37%

Table XXIII. Greedy versus Fast Greedy, Grouped Method. This table shows how
much faster schedules built by the Greedy algorithm finish executing versus schedules
built by the Fast Greedy algorithm. Positive values mean that the Greedy schedule
is executed xx% faster than the Fast Greedy schedule.

151

152

APPENDIX G. HOW TO RUN SMARTNET

1. GETTING STARTED
a. Unpacking the Code

It is suggested by the SmartNet development team that the code be unpacked

into a directory called SOLARIS. We follow that advice throughout this appendix.

The name SOLARIS is used because we used the Solaris operating system version of

SmartNet, and hence compiled the code on a Solaris machine. Take the sn.tar.gz file,

move it into the SOLARIS directory, and unzip it. Next, execute the command

tar xvf sn.tar

and the source code will expand.

b. Setting the Environment

In order to compile and run SmartNet, your environment must be set properly.

Below is all that I needed to do to set my environment for use at NPS (my login name

was rkarmstr; substitute your path and login name as appropriate).

• setup for SmartNet setenv SNROOT
• /users/work3/rkarmstr/S0LARIS set path=($path
• /users/work3/rkarmstr/S0LARIS/local/bin) set path=($path
• /opt/cygnus/bin) set path=($path /usr/xpg4/bin) setenv
• LD.LIBRARY.PATH /usr/include\:$LD_LIBRARY_PATH

c. Compiling SmartNet

While this used to be a terribly difficult procedure at NPS, we fixed the dif-

ficulties, so now the process seems to work fine. Compiling must be performed on a

machine running the Solaris operating system. There are two such machines available

at NPS, cincinnatus and virgo. Both machines are running SunOS 5.51, and both

machines are SPARCstation-20s. In order to compile SmartNet, perform the following

tasks, in order. (This assumes you have already installed the code.)

'SunOS 5.5 is also called Solaris 2.5.

153

1. telnet virgo or telnet cincinnatus.

2. cd /SOLARIS

3. src/sn/configure —enable-use_gnumake —enable-use_gcc

4. make depend

5. make

Other command line arguments to configure are listed below.

Usage: configure [options] [host]

Options: [defaults in brackets after descriptions]

Configuration:

—cache-file=FILE cache test results in FILE

—help print this message

—no-create do not create output files

—quiet, —silent do not print "checking...' messages

—version print the version of autoconf that
created configure

Directory and file names:

—prefix=PREFIX install architecture-independent

files in PREFIX [/usr/local]
—exec-prefix=PREFIX install architecture-dependent

files in PREFIX [same as prefix]
—srcdir=DIR find the sources in DIR

[configure dir or ..]

—program-prefix=PREFIX prepend PREFIX to installed
program names

--program-suffix=SUFFIX append SUFFIX to installed

program names
—program-transform-name=PROGRAM run sed PROGRAM on

installed program names

Host type:
—build=BUILD configure for building on

BUILD [BUILD=HOST]
~host=H0ST configure for HOST [guessed]
—target=TARGET configure for TARGET [TARGET=HOST]

154

Features and packages:
—disable-FEATURE do not include FEATURE

(same as —enable-FEATURE=no)
—enable-FEATURE[=ARG] include FEATURE [ARG=yes]
—with-PACKAGE [=ARG] use PACKAGE [ARG=yes]
—without-PACKAGE do not use PACKAGE

(same as —with-PACKAGE=no)
—x-includes=DIR X include files are in DIR
—x-libraries=DIR X library files are in DIR

—enable and —with options recognized:
—enable-use_gnumake use the gnumake utility,

very nifty indeed
—enable-use_gcc use the gcc compiler instead of

native compiler
—enable-use.DEBUG make this thing DEBUG'ed
—enable-use.OPTIMIZE make this thing OPTIMIZE'ed
—enable-use_RELEASE make a releable version.
—enable-use_static_link make static linked binaries.
—enable-use_purecov make static linked binaries.
—with-x use the X Window System

After several minutes, you will have compiled all the SmartNet binaries.

2. USING THE SMARTNET SIMULATOR

This section assumes that the user has access to the SmartNet Users Guide [Ref.

10]. The Users Guide includes extensive instructions for and examples of commands

for running SmartNet. The Users Guide does not include any information about

running SmartNet in simulation mode, however. This section explains how to run

SmartNet in simulation mode.

a. Files

In order to run SmartNet in simulation mode, there is specific information that

needs to be provided in certain files that will make SmartNet perform correctly.

155

i. .smartnetrc

This file is required by SmartNet regardless of whether it is being run

in simulation mode or not. The file may need to be altered, depending upon what we

are trying to measure with the simulator. Here is a sample . smartnetrc file.

dblnFilename: /users/work3/rkarmstr/S0LARIS/local/tests/hihi.0.0.dat
dbOutFilename: /dev/null
scheduler: OLB
rescheduleMode: Off
debug: none
debugFile: /dev/null

verbosity: v q

In the above . smartnetrc file, we would need to change the name of the input database

file dblnFilename dependent upon the test we were running. Also, the scheduling

algorithm used would need to be changed. Lastly, we may need to consider enabling

the reschedule capability rescheduleMode in order to allow rescheduling to occur.

The other lines can be altered as desired; explanation of all fields in the . smartnetrc

file can be found in the Users Guide.

ii. Command File

The command file lists jobs to be schedules and subsequently run by

SmartNet. In simulation mode, SmartNet needs the command file data in order to

know what jobs are to be scheduled and their execution simulated. An example of two

types of command files is available in this appendix in Section 4. The command file

can be anywhere in our directory structure; we will specify it by name and location

when needed.

b. Commands

In order to run SmartNet in simulation mode, several executables must be

started in a particular order. First, the SmartNet-master must be started in simulation

mode. This starts the SmartNet server in simulation mode as well as the SmartNet-

queue. It also reads the SmartNet database for use by the scheduler. An example

156

database is located in Section 5 of this appendix. These programs basically start

SmartNet. Next, we need to start the SmartNet logger, which enables logging of

all job execution and scheduling messaging. After the SmartNet logger, be start the

SmartNet submit program in simulation mode, which submits jobs, via the command

file, to SmartNet so that these jobs can be scheduled.

After these commands have been entered, SmartNet will build a schedule,

simulate the execution of the schedule, and stop. SmartNet master, queue, and server

will still be running until killed. SmartNet submit also remains running, and must

be killed by process number. SmartNet master and the rest can be killed with the

command sn-control — OFF. Note that the SmartNet logger will halt itself after

the schedule has executed. Section 6 of this appendix has a sample script used to

run through a single iteration of the process described above. Section 6 includes the

command line arguments needed to start all the executables discussed here.

c. Scripts

In order to make multiple runs of the SmartNet in simulation mode, we found

it most helpful to use scripts. In the previous section, we discussed one of the many

scripts used to help run SmartNet in simulation mode over and over again without

the need for human intervention at the beginning and end of each test of SmartNet.

Scripts were used throughout this research to simplify all the work performed.

Section 6 also includes a script used to run a set of experiments using mul-

tiple command files and multiple databases. It basically walks through the directory

structure set up to house the experiments and performs sequences of tests. Instead of

waiting at the terminal to type the commands, they have been scripted.

Section 6 also includes the Perl scripts written to parse data from the log files

that the SmartNet logger writes. These log files include scheduling information and

runtime information. We parsed this data using the file parselog.pl. This Perl

script extracts the important information from the log files and puts it into another

file, specified in the script. This parsed information is then parsed and averaged

157

again with the Perl script collect.pl, also found in Section 6. This script reduces

the parsed data to a manageable form. The output is less than a page, and represents

the run-time duration information of 60 separate executions of SmartNet.

3. RUNNING SMARTNET IN SIMULATION MODE

Previous to this section, we discussed the necessary components of getting

SmartNet ready to run, scripts used, and files/commands needed. Here, we put it all

together in a step-by-step format in an attempt to make the process easier to follow.

1. Unpack SmartNet source code.

2. Compile SmartNet source code into SmartNet binaries.

3. Determine the experiments you need to perform.

• Establish the directory structure you need for your output to be easily
identified as being produced by a certain database or command file. You
will need a . smartnetrc file in every directory from which you will run
SmartNet.

• Build your command file(s).

• Build you database(s).

• Ensure your . smartnetrc file(s) are calling the correct database file and
scheduling algorithm.

• Edit the parselog.pl and collect.pl files, as necesary. Each directory
that you are running SmartNet from should contain a copy of both of these
files. They should be able to be executed.

4. Build your scripts specific to the command files you intend to test. You will
want one of each type in each directory from which you are running SmartNet.

5. Build your scripts specific to running different sets of SmartNet scripts listed
previously. This is the big, "start it off" script.

6. Run the "start it off" script and collect your output.

Figure 43 shows how we set up our directory structure, to include naming

conventions and files included.

158

-rkarmstr/test

scripts to start collective runs,

database files, command files

algorithm .

used

category of

heterogeneity

used -■*.

hihi

OLB LBA Greedy Fastgreedy

Each directory above has

the following subdirectories

hilo lohi lolo hihi-consistent lohi-consistent

Each directory above has

the following subdirectories

database file

used

command files,'.

used

.smartnetrc

. 125-l.sh

. 125-2.sh

>■ 500-3. sh

500-4.sh

parselog.pl

_j collect.pl

.smartnetrc

125-up.sh

125-dn.sh

500-up.sh

500-dn.sh

parselog.pl

collect.pl

These were the directories

from which SmartNet was

run. Output files were written

to each of these directories

specific to the algorithm,

categories of heterogeneity,

and command file used.

Figure 43. Directory Structure Used For Experiments. This was the directory struc-
ture we used throughout the conduct of this research.

4. EXAMPLE COMMAND FILES

This section contains sample command files used in the conduct of this research.

a. Command File — The Random Method

This sample command file is used to tell SmartNet the names of the jobs it

needs to schedule. The jobs are read into SmartNet one at a time and with uniform

randomness — hence, the name The Random Method.

model = jobl
commandline = jobl
cchars = 100

159

stdout = /dev/null

submit = 1

model = job4

commandline = jobl

cchars = 100

stdout = /dev/null
submit = 1

model = job4

commandline = jobl
cchars = 100

stdout = /dev/null

submit = 1

model = job3

commandline = jobl

cchars = 100

stdout = /dev/null
submit = 1

model = job2
commandline = jobl
cchars = 100
stdout = /dev/null
submit = 1

model * job2
commandline = jobl
cchars = 100

stdout = /dev/null
submit * 1

model ■ job4
commandline = jobl
cchars « 100

stdout * /dev/null
submit * 1

model = job3
commandline = jobl

cchars = 100

160

stdout = /dev/null

submit = 1

161

b. Command File — The Grouped Method

This sample command file also tells SmartNet which jobs it needs to schedule.

It does so by grouping jobs. Note that j obi is requested to run 25 times — hence, the

grouped method.

model = jobl
commandline = jobl
cchars = 100

stdout = /dev/null
submit = 25

model = job2

commandline = jobl

cchars = 100

stdout = /dev/null
submit = 25

model = job3

commandline = jobl
cchars = 100
stdout = /dev/null
submit - 25

model = job4

commandline = jobl
cchars = 100

stdout = /dev/null
submit = 25

model = job5
commandline = jobl
cchars = 100

stdout = /dev/null
submit = 25

162

5. EXAMPLE DATABASE FILE
//
// Armstrong sample database file

// for testing the SmartNetsimulator

//

//

// The number of Site objects

//

0

//

// The number of Machine objects

//

4

// The IP address is repeated for all machines because
// SmartNet tries to connect to the machine even in
// simulation mode, even though it will not run anything
// on the machine. I gave it the IP address of hetero.

//
// Also, the names of te machines and jobs is notional
// See the SmartNet Users Guide for a more realistic

// database example.

machinel // Machine name

Sun // Architecture

131.120.2 1 // IP Address
Sun/Sparc 900
Notional
1 // Relative cost
1 //Is the machine notional?

NULL // Site Name

machine2 // Machine name

Sun // Architecture

131.120.2 1 // IP Address

Sun/Sparc 900
Notional
1 // Relative cost

1 // Is the machine notional?

NULL // Site Name

163

machine3
Sun

131.120.2.1

Sun/Sparc 900
Notional

1

1
NULL

// Machine name

// Architecture

// IP Address

// Relative cost

// Is the machine notional?
// Site Name

machine4

Sun

131.120.2.1

Sun/Sparc 900

Notional

1

1

NULL

// Machine name

// Architecture

// IP Address

// Relative cost

// Is the machine notional?
// Site Name

//

// The number of Model objects

//

3

jobl // Model name
Bob's Test Applicationl

1 // idempotent [0|1]
1 // The number of description lines
time

job2 // Model name
Bob's Test Application2

1 // idempotent [0 11]

1 // The number of description lines
time

job3 // Model name

Bob's Test Application3

1 // idempotent [0 11]
1 // The number of description lines
time

164

//
// The number of ModelMachine objects

//

12

machinel // Machine name

jobl // Model name
NULL // Group Name

normal // distribution type

300034.00 // moment-1 CHANGE FOR EACH
900102.0 // moment-2 CHANGE FOR EACH

0.0 // moment-3
$0 * 3000.34 // Theoretical compute function
$0*0 // Theoretical Network function
1 // Theoretical data use function
NULL // Theoretical floating-point function

// Compute Data:
0 // The amount of Experiential data
0 // The amount of normalized Experiential data

// Network Data:
0 // The amount of Experiential data

machinel // Machine name

job2 // Model name
NULL // Group Name
normal // distribution type

25.0 // moment-1 CHANGE FOR EACH
75.0 // moment-2 CHANGE FOR EACH
0.0// moment-3
$0 * 0.25 // Theoretical compute function
$0*0 // Theoretical Network function

1 // Theoretical data use function
NULL // Theoretical floating-point function

// Compute Data:

0 // The amount of Experiential data
0 // The amount of normalized Experiential data

// Network Data:

165

// The amount of Experiential data

machinel // Machine name

job3 // Model name

NULL // Group Name

normal // distribution type

1078.0 // moment-1 CHANGE FOR EACH
3234.0 // moment-2 CHANGE FOR EACH

0.0 // moment-3
$0 * 10 78
$0 * 0
1
NULL

0
0

// Theoretical compute function
// Theoretical Network function
// Theoretical data use function

// Theoretical floating-point function
// Compute Data:

// The amount of Experiential data

// The amount of normalized Experiential data
// Network Data:

// The amount of Experiential data

machine2 // Machine name
jobl // Model name

NULL // Group Name
normal // distribution type

11.0 // moment-1 CHANGE FOR EACH
33.0 // moment-2 CHANGE FOR EACH
0.0 // moment-3
$0 *
$0 *

1

NULL

0
0

11 // Theoretical compute function
// Theoretical Network function

// Theoretical data use function
// Theoretical floating-point function
// Compute Data:

// The amount of Experiential data

// The amount of normalized Experiential data
// Network Data:

// The amount of Experiential data

machine2 // Machine name
job2 // Model name

166

NULL // Group Name
normal // distribution type

1003.0 // moment-1 CHANGE FOR EACH

3009.0 // moment-2 CHANGE FOR EACH

0.0// moment-3

$0 * 10 03
$0 * 0
1
NULL

0
0

// Theoretical compute function

// Theoretical Network function

// Theoretical data use function
// Theoretical floating-point function

// Compute Data:
// The amount of Experiential data
// The amount of normalized Experiential data

// Network Data:
// The amount of Experiential data

machine2 // Machine name
job3 // Model name

NULL // Group Name
normal // distribution type
93.0 // moment-1 CHANGE FOR EACH
279.0 // moment-2 CHANGE FOR EACH
0.0 // moment-3
$0 * 0 93
$0 * 0
1
NULL

0
0

// Theoretical compute function
// Theoretical Network function

// Theoretical data use function

// Theoretical floating-point function

// Compute Data:
// The amount of Experiential data
// The amount of normalized Experiential data

// Network Data:
// The amount of Experiential data

machine3 // Machine name
jobl // Model name

NULL // Group Name
normal // distribution type
239.0 // moment-1 CHANGE FOR EACH
717.0 // moment-2 CHANGE FOR EACH
0.0 // moment-3

$0 * 2.39 // Theoretical compute function

167

$0*0
1

NULL

0

0

// Theoretical Network function
// Theoretical data use function

// Theoretical floating-point function
// Compute Data:

// The amount of Experiential data

// The amount of normalized Experiential data
// Network Data:
// The amount of Experiential data

machine3 // Machine name

job2 // Model name

NULL // Group Name

normal // distribution type

8619.0 // moment-1 CHANGE FOR EACH

25857.0 // moment-2 CHANGE FOR EACH

0.0 // moment-3
$0 * 86 19
$0 * 0
1
NULL

0
0

// Theoretical compute function

// Theoretical Network function
// Theoretical data use function

// Theoretical floating-point function
// Compute Data:
// The amount of Experiential data

// The amount of normalized Experiential data
// Network Data:

// The amount of Experiential data

machine3 // Machine name
job3 // Model name
NULL // Group Name
normal // distribution type

1950.0 // moment-1 CHANGE FOR EACH
5850.0 // moment-2 CHANGE FOR EACH
0.0// moment-3
$0 * 19 5
$0 * 0
1
NUI .L

0
0

// Theoretical compute function

// Theoretical Network function
// Theoretical data use function
// Theoretical floating-point function
// Compute Data:

// The amount of Experiential data

// The amount of normalized Experiential data

168

// Network Data:

// The amount of Experiential data

machine4 // Machine name

jobl // Model name
NULL // Group Name
normal // distribution type
30097.0 // moment-1 CHANGE FOR EACH

90291.0 // moment-2 CHANGE FOR EACH

0.0 // moment-3
$0 * 300.97 // Theoretical compute function
$0*0 // Theoretical Network function

1 // Theoretical data use function
NULL // Theoretical floating-point function

// Compute Data:
0 // The amount of Experiential data
0 // The amount of normalized Experiential data

// Network Data:
0 // The amount of Experiential data

machine4 // Machine name

job2 // Model name
NULL // Group Name

normal // distribution type
75.0 // moment-1 CHANGE FOR EACH
225.0 // moment-2 CHANGE FOR EACH
0.0 // moment-3

$0 *

$0 *
1

NULL

0
0

0.75
0

// Theoretical compute function

// Theoretical Network function
// Theoretical data use function

// Theoretical floating-point function
// Compute Data:
// The amount of Experiential data
// The amount of normalized Experiential data

// Network Data:
// The amount of Experiential data

machine4 // Machine name

job3 // Model name

169

NULL // Group Name

normal // distribution type
204001.0 // moment-1 CHANGE FOR EACH
612003.0 // moment-2 CHANGE FOR EACH
0.0 // moment-3

$0 * 2040.01 // Theoretical compute function
$0*0 // Theoretical Network function

1 // Theoretical data use function

NULL // Theoretical floating-point function
// Compute Data:

0 // The amount of Experiential data

0 // The amount of normalized Experiential data
// Network Data:

0 // The amount of Experiential data

//

// The SNData default Override object:

//

NULL //Model name
NULL //Machine name
ExecutionEquation NULL

DataUseEquation NULL
NetworkEquation NULL
ComputeWeight 1
NetworkWeight 1

TheoreticalExecutionWeight 0.5
Experi enti alExecut i onWe ight 0.5

OverrideExecutionWeight 0.5

TheoreticalNetworkWeight 0.5
ExperientialNetworkWeight 0.5
OverrideNetworkWeight 0.5
End_0verride

//

// inter-site network information (bandwidth & latency)
//

End.NetMatrix

170

6. EXAMPLE SCRIPTS
a. Script for Starting and Running SmartNet: 125-1.sh

This is a script which makes it very easy to start and run SmartNet in simu-

lation mode. The script will start SmartNet, execute a schedule in simulation mode,

and then stop SmartNet. If you need to do this repetitively, the script should include

multiple sequences of the below commands. We built scripts like the one below for

each separate command file. They were located in the directory from which we ran

SmartNet for that particular experiment.

#!/bin/ksh

• Start the master/server/queue
• -S is for simulation mode
• -s denotes the scheduling algorithm we desire to use.
f This can also be spcified in the .smartnetrc file.

• -f denotes the name of the database file to be loaded
• into SmartNet
smart net-master -S -s OLB -f /users/work3/rkarmstr/tests/hihi.O.O.dat &

f This allows things to start up correctly

sleep 10

• Start the logger
t -n tells the logger how many jobs will be scheduled so that it

• knows when to die

sn-log -n 125 -o testl25-l-l.log &

• This allows things to start up correctly

sleep 3

• Start SmartNet submit

• -S is for simulation mode
f the required argument is the name of the command file

• listing the jobs requests
sn-submit -S /users/work3/rkarmstr/tests/test125-1.cmd &

• Wait for the SmartNet logger to die

wait 7.2

171

Kill SmartMet submit

kill -QUIT °/,3

Wait for smartNet submit to die
sleep 10

Kill the SmartNet master/server/queue
sn-control — OFF

172

b. Script for Running Experiments: ttO.O.sh
#! /bin/ksh

This is a script to run all 0.0 variance tests

for hihiIhilollohilloloIlinear heterogeneous sets
on olbllbalgreedyIfastgreedy algorithms.

olb tests
mail rkarmstr < /users/work3/rkarmstr/S0LARIS/local/tests/mmolb

cd /users/work3/rkarmstr/SDLARIS/local/tests/olb/hihi/tO.0

125-1.sh

sleep 10

125-2.sh
sleep 10
500-3.sh
sleep 10

500-4.sh
sleep 30
parselog.pl
collect.pl
cd /users/work3/rkarmstr/SDLARIS/local/tests/olb/hilo/tO.0

125-l.sh
sleep 10
125-2.sh
sleep 10
500-3.sh
sleep 10
500-4.sh
sleep 30
parselog.pl

collect.pi
cd /users/work3/rkarmstr/S0LARIS/local/tests/olb/lohi/t0.0

125-l.sh
sleep 10
125-2.sh

sleep 10
500-3.sh
sleep 10
500-4.sh
sleep 30
parselog.pl

collect.pi

173

cd /users/work3/rkarmstr/SOLARIS/local/tests/olb/lolo/tO. 0
125-1.sh
sleep 10

125-2.sh

sleep 10

500-3.sh

sleep 10
500-4.sh

sleep 30

parselog.pl

collect.pi

cd /users/work3/rkarmstr/S0LARIS/local/tests/olb/linear/t0.0
125-1.sh

sleep 10

125-2.sh

sleep 10
500-3.sh
sleep 10
500-4.sh
sleep 30

parselog.pl
collect.pi

• lba tests

mail rkarmstr < /users/work3/rkarmstr/SDLARIS/local/tests/mmlba

cd /users/work3/rkarmstr/S0LARIS/local/tests/lba/hihi/t0.0
125-1.sh
sleep 10

125-2.sh
sleep 10

500-3.sh
sleep 10
500-4.sh
sleep 30
parselog.pl
collect.pi

cd /users/work3/rkarmstr/SOLARIS/local/tests/lba/hilo/tO.0
125-1.sh
sleep 10
125-2.sh
sleep 10

500-3.sh

174

sleep 10

500-4.sh
sleep 30

parselog.pl

collect.pl
cd /users/work3/rkarmstr/SOLARIS/local/tests/lba/lohi/tO.0

125-1.sh

sleep 10

125-2.sh

sleep 10

500-3.sh
sleep 10

500-4.sh
sleep 30
parselog.pl

collect.pi
cd /users/work3/rkarmstr/S0LARIS/local/tests/lba/lolo/t0.0

125-1.sh

sleep 10
125-2.sh

sleep 10

500-3.sh

sleep 10
500-4.sh
sleep 30
parselog.pl
collect.pi
cd /users/work3/rkarmstr/S0LARIS/local/tests/lba/linear/t0.0

125-1.sh
sleep 10

125-2.sh
sleep 10
500-3.sh
sleep 10
500-4.sh
sleep 30

parselog.pl

collect.pi

greedy tests
mail rkannstr < /users/work3/rkarmstr/S0LARIS/local/tests/mmgreedy

cd /users/work3/rkarmstr/S0LARIS/local/tests/greedy/hihi/t0.0

175

125-1.sh
sleep 10
125-2.sh

sleep 10

500-3.sh

sleep 10

500-4.sh

sleep 30
parselog.pl

collect.pi

cd /users/work3/rkarmstr/S0LARIS/local/tests/greedy/hilo/t0.0
125-1.sh

sleep 10

125-2.sh

sleep 10

500-3.sh
sleep 10

500-4.sh
sleep 30

parselog.pl

collect.pl

cd /users/work3/rkarmstr/S0LARIS/local/tests/greedy/lohi/t0.0
125-1.sh
sleep 10
125-2.sh
sleep 10

500-3.sh
sleep 10

500-4.sh
sleep 30

parselog.pl
collect.pi

cd /users/work3/rkarmstr/SDLARIS/local/tests/greedy/lolo/tO. 0
125-1.sh
sleep 10
125-2.sh
sleep 10

500-3.sh
sleep 10

500-4.sh
sleep 30

parselog.pl

176

collect.pl
cd /users/work3/rkarmstr/S0LARIS/local/tests/greedy/linear/t0.0

125-1.sh
sleep 10

125-2.sh

sleep 10
500-3.sh
sleep 10
500-4.sh

sleep 30

parselog.pl

collect.pi

fastgreedy tests
mail rkarmstr < /users/work3/rkarmstr/S0LARIS/local/tests/mmfastgreedy

cd /users/work3/rkarmstr/S0LARIS/local/tests/fastgreedy/hihi/tO.0

125-1.sh
sleep 10
125-2.sh
sleep 10

500-3.sh
sleep 10
500-4.sh
sleep 30
parselog.pl

collect.pi
cd /users/work3/rkarmstr/S0LARIS/local/tests/fastgreedy/hilo/tO . 0

125-1.sh
sleep 10
125-2.sh

sleep 10
500-3.sh
sleep 10
500-4.sh
sleep 30
parselog.pl

collect.pi
cd /users/work3/rkarmstr/S0LARIS/local/tests/fastgreedy/lohi/tO.0

125-1.sh
sleep 10

125-2.sh
sleep 10

177

500-3.sh
sleep 10

500-4.sh
sleep 30

parselog.pl
collect.pi

cd /users/work3/rkarmstr/S0LARIS/local/tests/fastgreedy/lolo/tO.0
125-1.sh
sleep 10

125-2.sh
sleep 10

500-3.sh
sleep 10

500-4.sh
sleep 30

parselog.pl
collect.pi

cd /users/work3/rkarmstr/S0LARIS/local/tests/fastgreedy/linear/tO.0
125-1.sh
sleep 10

125-2.sh
sleep 10

500-3.sh
sleep 10

500-4.sh
sleep 30

parselog.pl

collect.pi

mail rkarmstr < /users/work3/rkarmstr/S0LARIS/local/tests/mmdone

178

7. EXAMPLE PARSE SCRIPTS
a. Parsing Run-Time Data From Log Files: parselog.pl

#!/bin/perl

This Perl script is meant to run on version Perl 5.0.
Perl 5 is loaded onto virgo.
This script is written for 0 variance tests. That is why
it only looks for 15 repetitions of the logfile. For tests
where you run SmartNet more than once for each command file,

you need to change the "1" to "15" or whatever number

of reps you run. See the note at each place needing change.

use Cwd;

while (<*.log>) {
chmod 0600, $_;

}
«files = (,,testl25-l", "testl25-2", "test500-3", "test500-4") ;

for ($yy =0; $yy < 4; $yy++) {
open(0UT, ">parse-@files[$yy] .log");
print OUT "Data parsed from file:\t@files[$yy].log\n\n\n";

$dir = cwd();
print OUT "Output from directory:\n\t$dir\n\n";

$sum = 0;
for ($ix = 0; $ix < 1; $ix++) { ##Need to change the "1" to "15" normally

$iy = $ix + 1;
$aa = 0;
$flag = 0;
$count = 0;
$machinel = 0;

$machine2 = 0;

$machine3 = 0;
$machine4 = 0;
$machine5 = 0;
$machine6 = 0;
$machine7 = 0;

$machine8 = 0;
$machine9 = 0;
$machine!0 = 0;
$jobl = 0;

179

$job2 = 0;
$job3 = 0;

$job4 = 0;
$job5 = 0;

open(IN, "<afiles[$yy]-$iy.log") or die "Can't open Ofiles[$yy]-$iy.log\n";
while ($line = <IN>) {

($one, $two, $three, $four, $five, $six) = split(" ", $line);
if (($one eq "SCHED") && ($flag == 0)) {

if($four eq "host<machinel>") {

$machinel++;

}elsif ($four eq "host<machine2>'*) {
$machine2++;

}elsif ($four eq "host<machine3>") {

$machine3++;

}elsif ($four eq "host<machine4>") {
$machine4++;

}elsif ($four eq "host<machine5>") {
$machine5++;

}elsif ($four eq "host<machine6>") {
$machine6++;

}elsif ($four eq "host<machine7>") {
$machine7++;

}elsif ($four eq "host<machine8>") {
$machine8++;

}elsif ($four eq "host<machine9>") {
$machine9++;

}elsif ($four eq "host<machinelO>") {
$machinelO++;

}

}
if (($one eq "SCHED") && ($flag == 0)) {

if($five eq "model<jobl>") {
$jobl++;

}elsif ($five eq 1,model<job2>l,) {
$job2++;

}elsif ($five eq "model<job3>") {
$job3++;

}elsif ($five eq "model<job4>") {
$job4++;

}elsif ($five eq "model<job5>") {
$job5++;

180

if (($one eq "START") && ($flag == 0)) {

$three =~ s/time<//g;

$three =~ s/>//g;
$start[$ix] = $three;

print OUT "Run $iy: start:\t\t$start[$ix]\n";

$flag = 1;

}
if ($one eq "DONE") {

$count++;
if(($count == 125) and ($yy < 2)) {

$three =~ s/time<//g;

$three =~ s/>//g;

$end[$ix] = $three;

print OUT "Run $iy: end:\t\t$end[$ix]\n";
}elsif(($count == 500) and ($yy > D) {

$three =" s/time<//g;

$three =~ s/>//g;
$end[$ix] = $three;
print OUT "Run $iy: end:\t\t$end[$ix]\n";

}
$duration[$ix] = $end[$ix] - $start[$ix];

print OUT "DURATION for Run $iy is: $duration[$ix]\n\n
$sum = $sum + @duration[$ix];
close IN;
print OUT "Number of machinel assignments:
print OUT "Number of machine2 assignments:

print OUT "Number of machine3 assignments:
print OUT "Number of machine4 assignments:
print OUT "Number of machine5 assignments:
print OUT "Number of machine6 assignments:

print OUT "Number of machine7 assignments:
print OUT "Number of machine8 assignments:
print OUT "Number of machine9 assignments:
print OUT "Number of machinelO assignments:

$machinel\n'
$machine2\n":

$machine3\n";
$machine4\n'
$machine5\n'

$machine6\n'
$machine7\n'
$machine8\n'

$machihe9\n'
$machinelO\n\n":

print OUT "Number of jobl assignments: $jobl\n";
print OUT "Number of job2 assignments: $job2\n";

print OUT "Number of job3 assignments: $job3\n";

181

print OUT "Number of job4 assignments: $job4\n";

print OUT "Number of job5 assignments: $job5\n\n";

}

$average = $sum/l; ## Need to change to "15" normally

print OUT "\nAverage runtime for ©files[$yy] is: $average\n";
close OUT;

}

182

b. Collecting Run-Time Data
#! /bin/perl

use Cwd;

«files = <parse-*.log>;

$dir = cwd();
($first, $users, $work3, $rkarmstr, $solaris, $here, $tests, $algorithm, $heterog

$ix = 0;
open(0UT, ">$algorithm.collect") or die "Cannot open $algorithm.collect\n";

print OUT "Algorithm:\t$algorithm\nHeterogeneity:\t$heterogeneity\nTest run:\t$v<

while («files[$ix]){
open(IN, (shift «files)) or die "Can't open (shift ®files)\n";

while (<IN>) {
if(/Average runtime for test([0-9.]+)-([0-9]) is: *([0-9.]+)/) {

Saverage = $3;
print OUT "The average runtime for test$l-$2 is: $average \n";

}
}

close(IN);

}
close(OUT);

183

184

LIST OF REFERENCES

[l]Richard Freund, Debbie Hensgen, Taylor Kidd, and Lantz Moore. Smartnet: A
Scheduling Framework for Heterogeneous Computing. Proceedings of the Interna-
tional Symposium on Parallel Architectures, Algorithms and Networks, 1996.

[2] Lantz Moore. System Software Developers Desperately Need Better Simulation
Tools. In Jeffrey W. Wallace, Terrence G. Beaumariage, and Yasser Dessouky,
editors, Object-Oriented Simulation Conference (OOS '97). The Society for Com-
puter Simulation International, 1997.

[3]Richard Freund, Taylor Kidd, and Debra Hensgen. Performance Analysis and
Measurement in SmartNet. Prepared by the SmartNet Heterogeneous Computing
Team on 961213.

[4]Stephen L. Ambrosius, Stephen L. Scott, Richard F. Freund, and Howard Jay
Siegel. Work-based Performance Measurement and Analysis of Virtual Hetero-
geneous Machines. Heterogeneous Computing Workshop, 1996.

[5]Taylor Kidd, Debra Hensgen, Richard Freund, Matt Kussow, and Mark Camp-
bell. Compute Characteristics: A Useful Characterization of Job Runtimes. In
preparation for submission (1997).

[6]Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. The MIT Press, Cambridge, Massachusetts, 1990.

[7]David A. Patterson and John L. Hennessy. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers, Inc., San Francisco, CA, second edition,
1996.

[8]Cray Research, Inc. CRAY Y-MP EL Functional Description, 1992.

[9]Jesse C. Benton and Michael J. Lemanski. Simulation for SmartNet Scheduling
of Asynchronous Transfer Mode Virtual Channels. Master's thesis, U.S. Naval
Postgraduate School, June 1997.

[10]Naval Command, Control, and Ocean Surveillance Center, Research, Develop-
ment, Test and Evaluation Division, Code 422, 53140 Gatchell Road, San Diego,
CA 92152-7400. SmartNet Scheduling Tool v2.6 Users Guide, June 1996.

[ll]Hartmut Pohlheim. Genetic and Evolutionary Algorithm Toolbox for use with
Matlab (GEATbx). WWW: http://www.systemtechnik.tu-ilmenau.de/ pohl-
heim/GA_Toolbox/algoverv.html

185

[12]Paul Coddington. Simulated Annealing and Optimization. WWW:
http://www.npac.syr.edu/users/gcf/cps713montecarlo/nodel33.html. Northeast
Parallel Architectures Center at Syracuse University.

[13]Averill M. Law and W. David Kelton. Simulation Modeling and Analysis, Second
Edition. McGraw-Hill, Inc., New York, 1991.

[14]Sheldon M. Ross. A Course in Simulation. Macmillan Publishing Company, New
York, 1990.

[15]Donald E. Knuth. The Art of Computer Programming, volume 2, Seminumer-
ical Algorithms. Addison-Wesley Publishing Company, Reading, Massachusetts,
second edition, 1981.

[16]Mathrubootham Janakiraman. Simulation Results for Heuristic Algorithms for
Scheduling Precedence-Related Tasks in Heterogeneous Environments. Master's
thesis, University of Cincinnati, 1996.

[17]Sun Microsystems. SunOS Reference Manual, Volume I. Revision A of 27 March
1990.

[18]David Bailey et al. The NAS Parallel Benchmarks 2.0. Technical Report NAS-
95-020, NASA Ames Research Center, December 1995.

[19]Peter Pacheco. A User's Guide to MPI. Technical report, Department of Math-
ematics, University of San Fransisco, March 1995.

[20]A. Beguelin et al. HeNCE: A User' Guide. Oak Ridge National Laboratory and
University of Tennessee, December 1992. The document itself is available on the
web at cs.utk.edu.

186

INITIAL DISTRIBUTION LIST

1.Defense Technical Information Center
8725 John J. Kingman Road., Ste 0944
Ft. Belvoir, VA 22060-6218

2.Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3.Director, Training and Education
MCCDC, Code C46
1019 Elliot Road
Quantico, VA 22134-5027

4.Director, Marine Corps Research Center
MCCDC, Code C40RC
2040 Broadway Street
Quantico, VA 22134-5107

5.Director, Studies and Analysis Division
MCCDC, Code C45
3300 Russell Road
Quantico, VA 22134-5130

6.Marine Corps Representative
Naval Postgraduate School
Code 037, Bldg. 234, HA-220
699 Dyer Road
Monterey, CA 93940

7.Marine Corps Tactical Systems Support Activity
Technical Advisory Branch
Attn: Maj. J.C. Cumiskey
Box 555171
Camp Pendleton, CA 92055-5080

S.Debra Hensgen
Naval Postgraduate School
Code CS/Hd, Computer Sciences Dept.
833 Dyer Rd.
Monterey, CA 93943-5118

187

9.John Falby
Naval Postgraduate School
Code CS/Fa, Computer Sciences Dept.
833 Dyer Rd.
Monterey, CA 93943-5118

10.H.J. Siegel
Purdue University
Room 325, EE Building
School of Electrical and Computer Engineering
1285 Electrical Engineer Building
West Lafayette, IN 47907-1285

11.Richard Freund, Chief Scientist
Heterogeneous Computing Team
NCCOSC RDTE Div 4221 Rm 341A
53118 Gatchell Road
San Diego, CA 92152-7446

12.Taylor Kidd
Naval Postgraduate School
Code CS/Kt, Computer Sciences Dept.
833 Dyer Rd.
Monterey, CA 93943-5118

13.Viktor Prasanna
University of Southern California
Department of EE-Systems, EEB 200C
3740 McClintock Ave.
Los Angeles, CA 90089-2562

14.Major Bob Armstrong, USMC
5775 Hall Lane
Twentynine Palms, CA 92277-2195

15.Mr. and Mrs. R. K. Armstrong
140 Haverford Drive
Nashville, TN 37205

188

